|
1〕
李卫鹭. 田间麦蜘蛛的深度学习检测研究〔D〕. 合肥: 安徽大学, 2019.
〔2〕 TICAY-RIVAS J R,POZO-BA?譙OS
M D,EBERHARD W G, et al. Spider Specie Identification and Verification Based on
Pattern Recognition of It Cobweb〔J〕. Expert
Systems With Applications,2013,40(10):4213-4225.
〔3〕 DOLEV Y, NELSON X J. Innate Pattern
Recognition and Categorization in a Jumping Spider〔J〕. PLoS One,2014,9(6):e97819.
〔4〕 CLARK D L, UETZ G W. Video Image Recognition
by the Umping Spider, Maevia inclemens (Araneae: Salticidae)〔J〕.Animal
Behaviour,1990,40(5):884-890.
〔5〕 MISHKIN D, SERGIEVSKIY N, MATAS J. Systematic Evaluation of
Convolution Neural Network Advances on the Imagenet〔J〕. Computer Vision and Image Underst-anding,2017,161:11-19.
〔6〕 SIMONYAN K,ZISSERMAN A.Very Deep Convolutional
Networks for Large-Scale Image Recognition〔C〕//
Proce-edings of the 2015 ICLR Conference, San Diego,USA. 2015:1-14.
〔7〕 朱晓慧,钱丽萍,傅伟.图像数据增强技术研究综述〔J〕. 软件导刊,2021,20(5):230-236.
〔8〕 徐威,唐振民.利用层次先验估计的显著性目标检测〔J〕. 自动化学报,2015,41(4):799-812.
〔9〕 HAN Y, YE J C. Framing U-Net via Deep
Convolutional Framelets: Application to Sparse-View CT〔J〕. IEEE
Transactions on Medical Imaging,2018,37(6):1418-1429.
〔10〕 ELHENAWY M,RAKOTONIRAINY A, YOUNG K,et al. Detecting Driver Distraction
in the ANDS Data Using Pre-trained Models and Transfer Learning〔C〕// The Australasian Road Safety Conference. 2019.
〔11〕 龙明盛. 迁移学习问题与方法研究〔D〕. 北京:清华大
学,2014.
〔12〕 姚可欣,曹卫群. Trans-Net:基于迁移学习的手写简笔画识别〔J〕.计算机工程与应用,2021,57(3):182-188.
〔13〕 陈曦,姜黎.一种多头注意力提高神经网络泛化的方法〔J〕.软件导刊,2021,20(5):34-38.
〔14〕 黄英来,温馨,任洪娥,等.深度迁移学习在古筝品质分级中的应用〔J〕.计算机工程与应用,2021,57(10): 218-224.
〔15〕 ZENG Y Y, DAI T, CHEN B, et al. Correlation-Based
Structural Dropout for Convolutional Neural Networks〔J〕. Pattern Recognition, 2021,120(4):108-117.
〔16〕 GIDARIS S,KOMODAKIS N. Dynamic Few-Shot
Visual Learning Without Forgetting〔C〕//2018
IEEE/CVF Conf-erence on Computer Vision and Pattern Recognition (CVPR). 2018.
〔17〕 王曙燕,侯则昱,孙家泽.面向深度学习的对抗样本差异性检测方法〔J〕.计算机应用,2021,41(7):1849-1856.
〔18〕 汪志远,降爱莲,奥斯曼·穆罕默德.基于正则互表示的无监督特征选择方法〔J〕.计算机应用,2020,40(7):1896-1900.
〔19〕 LI S, HE Y T, LI T T, et al. Few-Shot Learning for Deformable Medical Image Registration
with Perception-Correspondence Decoupling and Reverse Teaching〔J〕. IEEE Journal of Biomedical and Health Informatics, 2021 (99):1.
〔20〕 大理大学数学与计算机学院. 蜘识〔EB/OL〕.〔2021-02-26〕.http://202.203.16.38.
|