大理大学学报 ›› 2022, Vol. 7 ›› Issue (6): 26-36.

• 数学与计算机科学 • 上一篇    下一篇

基于迁移学习与数据增强的蜘蛛识别平台研建

  

  1. 1.大理大学数学与计算机学院,云南大理 6710032.云南省昆虫生物医药研发重点实验室, 云南大理 671000

  • 收稿日期:2021-10-07 修回日期:2021-12-07 出版日期:2022-06-15 发布日期:2022-07-04
  • 通讯作者: 王建明,副教授,博士,E-mail:wangjianming618@163.com。
  • 作者简介:史晨阳,硕士研究生,主要从事迁移学习与图像识别研究。
  • 基金资助:

    国家自然科学基金项目(32001313);云南省地方本科高校(部分)基础研究联合专项资金项目(2018FH001-106);云南省博士后科研基金项目(ynbh20057);云南省重大科技专项计划项目(202002AA100007);云南省基础研究计划项目(202201AT070006

Research and Construction of Spider Recognition Platform Based on Transfer Learning and Data Augmentation

  1. 1. College of Mathematics and Computer, Dali University, Dali, Yunnan 671003, China; 2. Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali, Yunnan 671000, China
  • Received:2021-10-07 Revised:2021-12-07 Online:2022-06-15 Published:2022-07-04

摘要:

物种智能识别是当前研究的热点,基于迁移学习,结合数据增强技术研建了蜘蛛物种智能识别平台。首先基于突出前景及传统方法增强数据;其次使用迁移学习中预训练加微调的方法将ImageNet预训练的VGG-16模型参数作为初始参数并冻结卷积层,只训练全连接层;最后结合移动开发技术研建含安卓与微信端识别系统及后台管理系统的智能识别平台。经测试,系统对41种共5类蜘蛛的识别平均准确率达到95%以上。该平台能在提供基础识别服务、有效降低物种识别难度、提高识别率以及识别的稳定性的同时,进一步收集用户上传的大量物种图像数据,并且集成线上专家资源,从而不断迭代完善识别系统,在蛛形类资源的相关研究中,具有重要的应用研究价值。

关键词:

深度学习, 数据增强, 迁移学习, 微调, 自动识别

Abstract:

Species intelligent identification is a hot spot of current research. Based on transfer learning this paper has developed a spider species intelligent identification platform combining with data augmentation technology. First to enhance the data based on prominent prospects and traditional methods second to use the method of pre-training and fine-tuning in transfer learning to take the VGG-16 model parameters pre-trained by ImageNet as the initial parameters and freeze the convolutional layer and only the fully connected layer is trained finally to combine mobile the research and construction of mobile technology including the intelligent recognition platforms of Android and WeChat recognition systems and a background management system. After testing the system had an average accuracy of more than 95% for the recognition of five types of spiders4 families and 1 species. The platform could provide basic identification services thus effectively reduce the difficulty of species identification improve the identification rate and the stability of identification. At the same time it could further collect a large number of species image data uploaded by users and integrate online expert resources so as to continuously iterated and improved the identification system. In the related research of arachnids resources it has important application and theoretical values.

Key words:

 , deep learning, data augmentation, transfer learning, fine-tuning, automatic identification

中图分类号: