大理大学学报 ›› 2023, Vol. 8 ›› Issue (6): 44-51.

• 物理学 • 上一篇    下一篇

基于长短期记忆网络模型的大理气候预测

袁锦诚,李忠木*   

  1. 大理大学天文研究所,云南大理 671003
  • 收稿日期:2022-08-29 修回日期:2022-12-03 出版日期:2023-06-15 发布日期:2023-06-27
  • 通讯作者: 李忠木,教授,博士,E-mail:zhongmuli@126.com。
  • 作者简介:袁锦诚,硕士研究生,主要从事气候大数据研究。
  • 基金资助:
    云南省汪景琇院士工作站(202005AF150025);云南省教育厅科学研究基金项目(2022Y869

Dali Climate Prediction Based on Long Short-Term Memory Network Model

Yuan Jincheng Li Zhongmu*   

  1. Institute for Astronomy Dali University Dali Yunnan 671003 China
  • Received:2022-08-29 Revised:2022-12-03 Online:2023-06-15 Published:2023-06-27

摘要:

为了对大理的气候进行预测,基于Keras框架构建了长短期记忆网络(LSTM)模型,得到了较为准确的大理气候预测结果。实验给出了大理20166月至20215月的温度、降水、湿度、日照时数的预测结果,均方根误差(RMSE)分别为1.544 2.720 mm6.521% rh1.990 h,平均绝对百分比误差(MAPE)分别为0.087 4.025 mm0.085% rh0.462 h。模型对温度、湿度预测结果较好,但是由于降水、日照时数的数值波动大且极端数值多,所以预测误差比较大。实验得到的RMSE和MAPE均低于传统的循环神经网络(RNN)、支持向量机(SVM)、最近邻算法(KNN)等模型。因此,所构建的LSTM模型能够得到具有较高预测精度的大理气候预测结果。

关键词: font-family:宋体, ">机器学习, 长短期记忆网络, 气候预测, 气候变化

Abstract:

Based on the Keras framework a long short-term memory network LSTM model is constructed for climate prediction in Dali. The experimental results showed that the model could accurately predict the temperature precipitation humidity and sunshine hours from June 2016 to May 2021 with root mean square errorRMSE of 1.544 2.720 mm 6.521% rh and 1.990 h and mean absolute percentage errorMAPE of0.087 4.025 mm 0.085% rh and 0.462 h. The model performs well in predicting temperature and humidity but the prediction error is relatively large for precipitation and sunshine hours due to their large fluctuations and extreme values. The RMSE and MAPE obtained by the experiment are lower than those obtained by traditional models such as recurrent neural network  RNN), support vector machine SVM), and K-nearest neighbor KNN. Therefore the LSTM model can produce higher prediction accuracy for climate prediction in Dali.

Key words: ">machine learningfont-family:宋体, ">, ">LSTMfont-family:宋体, ">, ">climate predictionfont-family:宋体, ">, ">climate change

中图分类号: