大理大学学报 ›› 2024, Vol. 9 ›› Issue (12): 25-29.

• 数学与计算机科学 • 上一篇    下一篇

Lagrange插值方法的一致收敛性及算法研究

  

  1. (滁州城市职业学院教育学院,安徽滁州 239000)
  • 收稿日期:2022-12-01 出版日期:2024-12-15 发布日期:2024-12-17
  • 作者简介:袁远, 副教授,主要从事数学教育研究。
  • 基金资助:
    滁州城市职业学院校级科学研究项目(2024skzd07)

Uniform Convergence and Algorithm of Lagrange Interpolation Method

  1. (Department of Education, Chuzhou City Vocation College, Chuzhou, Anhui 239000, China)
  • Received:2022-12-01 Online:2024-12-15 Published:2024-12-17

摘要:
为解决Lagrange插值多项式并非对任意的连续函数都一致收敛的问题,通过一点修正法的Bernstein型算子与两点修正法的三角插值多项式算子、代数多项式算子改善其收敛性。利用一点修正法构造了一个代数多项式算子Fn ( f;x)(即Bernstein型算子),利用两点修正法构造了三角插值多项式算子Tn ( f;r,x)( r为自然数)、代数多项式算子Gn,R ( f;x() R为自然数),通过C语言编写具体程序,分析其逼近效果的优劣。结果表明:与Lagrange插值多项式算子相比,采用一点修正法与两点修正法优化的Bernstein型算子、三角插值多项式算子与代数多项式算子的运行速度更快,误差值更小,收敛结果与精确解更逼近。

关键词:  , Lagrange插值, 收敛性, 逼近, 修正法

Abstract: To solve the problem that Lagrange interpolation polynomials do not uniformly converge for any continuous function, the
convergence is improved by the Bernstein-type operator with the one-point correction method and the trigonometric interpolation
polynomial operators and algebraic polynomial operator with the two-point correction method. The one-point correction method is used to construct an algebraic polynomial operator Fn ( f;x)(Bernstein-type operator), two-point correction method is used to construct trigonometric interpolation polynomial operator Tn ( f; r, x)( r is a natural number), and algebraic polynomial operator Gn, R ( f; x)( R is a natural number), and a specific program is written in C language to analyze the superiority and inferiority of its approximation effects. The results show that compared with Lagrange interpolation polynomial operators, the Bernstein-type operator, trigonometric interpolation polynomial operator and algebraic polynomial operator optimized by the one-point correction method and the two-point correction method have faster running speed, smaller error values, and closer convergence results to the exact solution.

Key words: Lagrange interpolation, convergence, approach, correction method

中图分类号: