大理大学学报 ›› 2024, Vol. 9 ›› Issue (8): 67-74.DOI: 10. 3969 / j. issn. 2096-2266. 2024. 08. 012

• 基础医学 • 上一篇    下一篇

2型糖尿病患者并发高尿酸血症的临床预测模型构建及应用评估研究

周 也1,范冠杰2,杨 博1,张恒艳1,晏和国1,3*   

  1. (1. 昭通市中医医院,云南昭通 657000; 2. 广东省中医院,广州 510120;
    3. 云南中医药大学,昆明 650500)
  • 收稿日期:2023-06-27 修回日期:2023-10-26 出版日期:2024-08-15 发布日期:2024-08-12
  • 通讯作者: 晏和国,主治医师,博士研究生,E-mail:1521254674@qq.com。
  • 作者简介:周也,主治医师,主要从事中医药防治内科疾病研究。
  • 基金资助:
    云南省基础研究计划项目(202101AZ070001-140;202101AZ070001-312);云南省高层次中医药人才培养中医药后备人才培养项目

Construction and Application Evaluation of Clinical Prediction Model for Type 2 Diabetes Patients#br# with Hyperuricemia

Zhou Ye1, Fan Guanjie2, Yang Bo1, Zhang Hengyan1, Yan Heguo1,3*   

  1. (1. Zhaotong Hospital of Traditional Chinese Medicine, Zhaotong, Yunnan 657000, China; 2. Guangdong Provincial Hospital of
    Traditional Chinese Medicine, Guangzhou 510120, China; 3. Yunnan University of Chinese Medicine, Kunming 650500, China)
  • Received:2023-06-27 Revised:2023-10-26 Online:2024-08-15 Published:2024-08-12

摘要: 目的:构建并评估2型糖尿病患者并发高尿酸血症的临床预测模型,探究其独立危险因素。方法:回顾性分析2020年1
月至2021年12月昭通市中医医院内分泌科收治的553例2型糖尿病患者的病历资料,按是否并发高尿酸血症将患者分为高尿
酸血症组和非高尿酸血症组。采用LASSO回归筛选预测变量并构建Logistic回归模型,筛选出2型糖尿病患者并发高尿酸
血症的独立危险因素,绘制列线图对模型进行可视化展示,并通过区分度、校准度、临床适用度对模型的预测效能进行评估。
结果:2组患者在体重指数、并发糖尿病肾病、规范降糖治疗、总胆固醇、甘油三酯、血清肌酐、血尿素氮、胰岛素抵抗指数、湿热
困脾证、气阴两虚证等方面差异有统计学意义(P<0.05);对LASSO回归筛选出8个预测变量进行多重共线性诊断,删除气阴两
虚证后构建预测模型并进行多因素Logistic回归分析。结果显示7个预测变量均为2型糖尿病患者并发高尿酸血症的独立危
险因素(P<0.05),该模型的区分度、校准度、临床适用度均较好。结论:体重指数、并发糖尿病肾病、规范降糖治疗、总胆固醇、
甘油三酯、胰岛素抵抗指数、湿热困脾证是2型糖尿病患者并发高尿酸血症的独立危险因素,以此为基础构建的临床预测模型
能够为临床防治2型糖尿病并发高尿酸血症提供可靠依据。

关键词: 2型糖尿病, 高尿酸血症, 临床预测模型, 列线图

Abstract: Objective: To construct and evaluate a clinical prediction model for type 2 diabetes patients with hyperuricemia and
explore its independent risk factors. Methods: Retrospective analysis was conducted on the medical records of 553 type 2 diabetes
patients admitted to the department of endocrinology of Zhaotong Hospital of Traditional Chinese Medicine from January 2020 to
December 2021. The patients were divided into hyperuricemia group and non-hyperuricemia group according to whether hyperuricemia
was complicated or not. LASSO regression was used to select predictive variables and construct a Logistic regression model to identify
independent risk factors for type 2 diabetes patients with hyperuricemia. The model was visualized by drawing a nomogram, and the
predictive efficacy of the model was evaluated by the degree of differentiation, calibration and clinical applicability. Results: There
were statistically significant differences (P<0.05) between the two groups of patients in body mass index, concurrent diabetic
nephropathy, standardized hypoglycemic therapy, total cholesterol, triglycerides, serum creatinine, blood urea nitrogen, insulin
resistance index, dampness-heat obstructing the spleen syndrome, and qi-yin deficiency syndrome. Eight predictive variables were
selected by LASSO regression for multicollinearity diagnosis, and the prediction model was constructed after the qi-yin deficiency
syndrome was deleted and multi-factor Logistic regression was performed. The results showed that seven predictive variables were
independent risk factors for type 2 diabetes patients with hyperuricemia (P<0.05), and the model had good differentiation, calibration
and clinical applicability. Conclusion: Body mass index, concurrent diabetic nephropathy, standardized hypoglycemic therapy, total
cholesterol, triglycerides, insulin resistance index, and dampness-heat obstructing the spleen syndrome are independent risk factors for
type 2 diabetes patients with hyperuricemia. The clinical prediction model based on these factors can provide a reliable basis for the
clinical prevention and treatment of hyperuricemia in patients with type 2 diabetes.

Key words: type 2 diabetes, hyperuricemia, clinical prediction model, nomogram

中图分类号: