大理大学学报 ›› 2021, Vol. 6 ›› Issue (12): 81-86.

• 学生园地 • 上一篇    下一篇

基于机器学习的在线评论情感分析与实现

  

  1. 大理大学数学与计算机学院,云南大理 671003
  • 收稿日期:2021-03-23 出版日期:2021-12-15 发布日期:2022-01-14
  • 通讯作者: 赵榆琴,讲师,E-mail:mygod569@163.com。
  • 作者简介:尚永敏, 2017级统计学专业本科生。
  • 基金资助:
    云南省教育厅科学研究基金项目(2021J0338)

Sentiment Analysis and Implementation of Online Reviews Based on Machine Learning

  1. College of Mathematics and Computer,Dali University,Dali,Yunnan 671003, China
  • Received:2021-03-23 Online:2021-12-15 Published:2022-01-14

摘要: 采集京东商城热销笔记本电脑的评论数据,使用Python语言对评论数据进行数据清洗、文本分词和停用词过滤等数据预处理。采用机器学习方法中的朴素贝叶斯、支持向量机方法以及SnowNLP方法对数据进行情感分类。通过比较3种方法分类结果,选出在线评论情感分类的最优分类方法。采用LDA主题模型,分不同主题,提取评论集中的正面情感词集与负面情感词集,并将结论数据可视化,进一步挖掘商品的闪光点和问题点,最终构建并实现基于机器学习的“SnowNLP+LDA”在线情感分析方案。

关键词: 情感分析, 机器学习, SnowNLP, LDA模型, 支持向量机, 朴素贝叶斯

Abstract:

This study collected comment data from hot-selling laptops on JD.com and used Python to perform data cleaning text segmentation and stop-words filtering. Afterwards Naive Bayes support vector machineSVM method and SnowNLP method in machine learning methods are used to classify data for sentiment. By comparing the classification results of the three methods the optimal classification method for online comment sentiment classification was selected. The LDA topic model is used to divide different topics extract the positive sentiment word set and the negative sentiment word set in the review set and visualize the conclusion data to further explore the highlights and drawbacks of the product. Finally a "SnowNLP+ LDA" online sentiment analysis program based on machine learning was constructed.

Key words:

"> sentiment analysis, machine learning, SnowNLP, LDA model, SVM, Naive Bayes

中图分类号: