J4 ›› 2014, Vol. 13 ›› Issue (6): 29-32.
Previous Articles Next Articles
Received:
Online:
Published:
Abstract:
This paper discusses how to produce and draw the most representative of the fractal structure of Diffusion Limited Aggregation(DLA)model based on the fractal theories of iterative process, so that the process of particle dynamic growth and simulate the growth of plants are observed. By using the method of mathematical modeling for curve fitting, it establishes two more reasonable mathematical models of simulating plants growth, which are 3 polynomial model and index function model. They can predict the trend of plants growth, and realize the real-time monitoring of plants growth and estimation.
Key words: DLA model, 3 polynomial model, index function model
CLC Number:
O244
MA Lin-Tao, CHEN De-Yong. Study on DLA Model and Its Application in Simulating Plants Growth[J]. J4, 2014, 13(6): 29-32.
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://journal15.magtechjournal.com/Jwk_dlxyzk/EN/
http://journal15.magtechjournal.com/Jwk_dlxyzk/EN/Y2014/V13/I6/29
〔1〕肯尼思·法尔科内.分形几何:数学基础及其应用〔M〕. 曾 文曲,译.沈阳:东北大学出版社,2003:344-349. 〔2〕沙震,阮火军.分形与拟合〔M〕.杭州:浙江大学出版社, 2005:183-188. 〔3〕苏维宜.局部域上的调和分析与分形分析及其应用〔M〕. 北京:科学出版社,2011:229-230.
〔4〕高睿,谢淑云,陶继东.在MATLAB平台下实现DLA分形 聚集生长的模拟〔J〕. 西南师范大学学报:自然科学版, 2005,30(1):84-86. 〔5〕孙博文.分形算法与程序设计:Visual C++实现〔M〕.北京: 科学出版社,2004:98-100. 〔6〕马林涛,陈德勇,张琰.分形插值函数及其维数〔J〕.广西 民族大学学报:自然科学版,2012,18(3):34-38. 〔7〕马林涛,陈德勇.基于Matlab程序的图像灰度均衡化及其 边缘检测〔J〕.广西师范学院学报:自然科学版,2012,29 (2):37-42. 〔8〕王昊鹏,赵凯,关止.基于DLA 模型的植物生长模拟研 究〔J〕.微计算机信息,2007,23(8-3):234-235. 〔9〕李红.数值分析〔M〕.武汉:华中科技大学出版社,2010: 67-74. 〔10〕况颐,陈彦光.DLA 和DBM 模型与城市生长的分形模 拟:关于城市分形形态模拟方法的一个理论探讨〔J〕.信 阳师范学院学报:自然科学版,2001,14(3):303-307. 〔11〕张丽娜,何远,窦琼英,等.基于组合混沌的伪随机数算 法研究〔J〕.大理学院学报,2013,12(10):6-8.