›› 2019, Vol. 4 ›› Issue (6): 10-14.
Previous Articles Next Articles
Received:
Online:
Published:
Abstract: Stellarspectralclassificationisanimportantmethodofspectralanalysis,anditisanimportantpartofcelestialdata mining.Inaccordancewiththeselectedspectraldataof33000F,GandKtypestarsfromLAMOST(theLargeSkyAreaMulti-Object FiberSpectroscopicTelescope)DataRelease5(DR5),amethodbasedonthedeepbeliefnetworkforclassificationwasadopted.The deepbeliefnetworkmodelisestablishedbyhierarchicalfeaturelearningofstellarspectraldataduringtraining,andfinally,thestellar spectralclassificationtestofthismodelshowsthattheclassificationaccuracyofthethreestarsF,GandKare0.93,0.90and0.98 respectively,whichverifiesthecorrectnessofthemodelanditshighclassificationaccuracyrateandisofgreatsignificanceforthe processingofmassivecelestialspectraldata.
Key words: spectralclassification, featurelearning, deeplearning, deepbeliefnetwork
CLC Number:
TN911.74
ZhangJingmin1,XuTingting1,DuLiting1,ZhouWeihong1,2* . StudyontheClassificationofLAMOSTStellarSpectraBasedonDeepBeliefNetwork[J]. , 2019, 4(6): 10-14.
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://journal15.magtechjournal.com/Jwk_dlxyzk/EN/
http://journal15.magtechjournal.com/Jwk_dlxyzk/EN/Y2019/V4/I6/10