›› 2019, Vol. 4 ›› Issue (6): 10-14.

Previous Articles     Next Articles

StudyontheClassificationofLAMOSTStellarSpectraBasedonDeepBeliefNetwork

  

  1. (1.SchoolofMathematicsandComputerScience,YunnanMinzuUniversity,Kunming650500,China;2.KeyLaboratoryofthe StructureandEvolutionofCelestialObjects,ChineseAcademyofSciences,Kunming650011,China)
  • Received:2019-01-15 Online:2019-06-15 Published:2019-06-15

Abstract: Stellarspectralclassificationisanimportantmethodofspectralanalysis,anditisanimportantpartofcelestialdata mining.Inaccordancewiththeselectedspectraldataof33000F,GandKtypestarsfromLAMOST(theLargeSkyAreaMulti-Object FiberSpectroscopicTelescope)DataRelease5(DR5),amethodbasedonthedeepbeliefnetworkforclassificationwasadopted.The deepbeliefnetworkmodelisestablishedbyhierarchicalfeaturelearningofstellarspectraldataduringtraining,andfinally,thestellar spectralclassificationtestofthismodelshowsthattheclassificationaccuracyofthethreestarsF,GandKare0.93,0.90and0.98 respectively,whichverifiesthecorrectnessofthemodelanditshighclassificationaccuracyrateandisofgreatsignificanceforthe processingofmassivecelestialspectraldata.

Key words: spectralclassification, featurelearning, deeplearning, deepbeliefnetwork

CLC Number: