›› 2019, Vol. 4 ›› Issue (6): 5-9.
Previous Articles Next Articles
Received:
Online:
Published:
Abstract: Inordertoimprovetherecognitionrateofhandwrittendigitsbyneuralnetwork,theAdaboost-BPbinaryclassification algorithmisimprovedbasedontheideaofAdaboost,andtheAdaboost-BPalgorithmformulti-classificationisrealized,which improvestherecognitionrateofhandwrittendigitsbyneuralnetwork.Inthispaper,thecalculationformulaoftheweightvalueofthe "weak"classifierisimproved.Thestepofnormalizingtheweightvalueisputaftertheiterativetrainingofthe"weak"classifier,and thecompositionofthe"strong"classifieriscalculatedwithoutusingthesymbolfunctionbutdirectlycomputestheclassification results.TheexperimentaldataisbasedonMNISThandwrittendatabase.Theexperimentalresultsshowthatthecorrectrateofthe "strong"classifierconstructedbytheimprovedAdaboost-BPalgorithmisobviouslyhigherthanthatofthe"weak"classifier.The improvedAdaboost-BPalgorithmcanobviouslyimprovetheaccuracyofhandwrittendigitrecognition.
Key words: Adaboost-BPalgorithm, handwrittendigit, MNIST
CLC Number:
TP183
YeXiaobo1,QinHaifei2,LyuYonglin3 . ResearchonanImprovedAdaboost-BPAlgorithminHandwrittenDigitRecognition [J]. , 2019, 4(6): 5-9.
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://journal15.magtechjournal.com/Jwk_dlxyzk/EN/
http://journal15.magtechjournal.com/Jwk_dlxyzk/EN/Y2019/V4/I6/5