›› 2019, Vol. 4 ›› Issue (6): 5-9.

Previous Articles     Next Articles

ResearchonanImprovedAdaboost-BPAlgorithminHandwrittenDigitRecognition

  

  1. (1.InstituteofNetwork&InformationSystems,ChuxiongNormalUniversity,Chuxiong,Yunnan 675000,China;2.Schoolof InformationSciences&Technology,ChuxiongNormalUniversity,Chuxiong,Yunnan675000,China;3.SchoolofEconomics& Management,ChuxiongNormalUniversity,Chuxiong,Yunnan675000,China)
  • Received:2018-10-31 Online:2019-06-15 Published:2019-06-15

Abstract: Inordertoimprovetherecognitionrateofhandwrittendigitsbyneuralnetwork,theAdaboost-BPbinaryclassification algorithmisimprovedbasedontheideaofAdaboost,andtheAdaboost-BPalgorithmformulti-classificationisrealized,which improvestherecognitionrateofhandwrittendigitsbyneuralnetwork.Inthispaper,thecalculationformulaoftheweightvalueofthe "weak"classifierisimproved.Thestepofnormalizingtheweightvalueisputaftertheiterativetrainingofthe"weak"classifier,and thecompositionofthe"strong"classifieriscalculatedwithoutusingthesymbolfunctionbutdirectlycomputestheclassification results.TheexperimentaldataisbasedonMNISThandwrittendatabase.Theexperimentalresultsshowthatthecorrectrateofthe "strong"classifierconstructedbytheimprovedAdaboost-BPalgorithmisobviouslyhigherthanthatofthe"weak"classifier.The improvedAdaboost-BPalgorithmcanobviouslyimprovetheaccuracyofhandwrittendigitrecognition.

Key words: Adaboost-BPalgorithm, handwrittendigit, MNIST

CLC Number: