Journal of Dali University ›› 2025, Vol. 10 ›› Issue (12): 24-31.
Previous Articles Next Articles
Online:
Published:
Abstract: High-utility co-location patterns refer to those with strong instructive value and application-driven potential. Its extraction is based on utility values associated with dataset features or with individual instances. Research indicates that the distance distribution between feature-participating instances and neighboring instances, as well as the co-located instances formed by participating instances, reflect the utility of feature-participating instances in the pattern. Therefore, this study defines metrics for instance participation based on row instance utility, instance participation pattern utility, feature average participation utility, and pattern average participation utility, and proposes an algorithm for mining high average-utility co-location patterns based on instance distribution. The algorithm′s effectiveness is validated using both synthetic and real-world datasets, demonstrating its ability to uncover co-location patterns with high instance participation frequency, importance, and favorable distance distribution. However, it may miss a small number of co-location patterns with lower utility.
Key words: co-location pattern, high average-utility co-location pattern, feature average participation utility, pattern average participation utility
CLC Number:
TP311
Zhao Qinyi, Li Yi, Luo Guilan, Hei Shaomin, Zhao Yunqin. Mining of High Average-Utility Co-Location Patterns Based on Instance Distribution[J]. Journal of Dali University, 2025, 10(12): 24-31.
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://journal15.magtechjournal.com/Jwk_dlxyzk/EN/
http://journal15.magtechjournal.com/Jwk_dlxyzk/EN/Y2025/V10/I12/24
导特征挖掘〔J〕. 计算机科学,2022,49(S2):247-253.
〔7〕 方圆,王丽珍,周丽华. 含关键特征的显著Co-location模 式挖掘研究〔J〕. 数据采集与处理,2018,33(4):692- 703. 〔8〕 李新源,陈红梅,肖清,等. 时空亚频繁co-location模式 挖掘〔J〕. 西南大学学报(自然科学版),2020,42(11): 68-76. 〔9〕 刘宇情,王丽珍,杨培忠,等. 基于网格空间团的多级同 位模式挖掘方法〔J〕. 浙江大学学报(工学版),2024,58 (5):918-930. 〔10〕 刘新斌,王丽珍,周丽华. MLCPM-UC:一种基于模式实 例分布均匀系数的多级co-location模式挖掘算法〔J〕. 计算机科学,2021,48(11):208-218. 〔11〕 方圆,王丽珍,王晓璇,等. 基于空间占有度的主导并置 模式挖掘〔J〕. 计算机研究与发展,2022,59(2):264- 281. 〔12〕 赵秦怡,黑邵敏. 基于指定特征的加权co-location模式 挖掘方法〔J〕. 大理大学学报,2023,8(12):15-21. 〔13〕 曾新,李振鹏,杨健,等. 含稀有特征的高平均效用colocation 模式挖掘算法〔J〕. 大理大学学报,2021,6(12): 5-11. 〔14〕 马董,陈红梅,王丽珍,等. 空间亚频繁co-location模式 的主导特征挖掘〔J〕. 计算机应用,2020,40(2):465- 472. 〔15〕 马董,李新源,陈红梅,等. 星型高影响的空间colocation 模式挖掘〔J〕. 计算机科学,2022,49(1):166- 174. 〔16〕 熊开放. 基于实例分布的co-location主导特征模式挖 掘研究〔D〕. 昆明:云南大学,2022.
An Effective Algorithm for Mining High Average-Utility Co-Location Patterns
High Average-Utility Co-Location Patterns Mining Algorithm with Rare Features