西南石油大学学报(自然科学版) ›› 2017, Vol. 39 ›› Issue (2): 35-42.DOI: 10.11885/j.issn.1674-5086.2015.10.22.02

• 地质勘探 • 上一篇    下一篇

辽河东部凸起太原组页岩孔隙结构特征研究

张琴1,2, 庞正炼3, 刘人和1,2, 毛俊莉4   

  1. 1. 中国石油勘探开发研究院廊坊分院, 河北 廊坊 065007;
    2. 国家能源页岩气研发(实验)中心, 河北 廊坊 065007;
    3. 中国石油勘探开发研究院, 北京 海淀 100083;
    4. 中国石油辽河油田勘探开发研究院, 辽宁 盘锦 124010
  • 收稿日期:2015-10-22 出版日期:2017-04-01 发布日期:2017-04-01
  • 作者简介:张琴,1985年生,女,汉族,湖北荆门人,工程师,硕士,主要从事非常规油气地质研究。E-mail:zhangqin2169@petrochina.com.cn;庞正炼,1984年生,男,汉族,浙江台州人,工程师,博士,主要从事油气成藏研究。E-mail:pangzl@petrochina.com.cn;刘人和,1971年生,男,汉族,河南固始人,高级工程师,博士,主要从事非常规油气地质研究。E-mail:liurenhe69@petrochina.com.cn;毛俊莉,1971年生,女,汉族,浙江萧山人,高级工程师,硕士,主要从事油气勘探研究工作。E-mail:maojl@petrochina.com.cn
  • 基金资助:
    国家科技重大专项(2008ZX05018);国家重点基础研究发展计划(973计划)(2013CB228000)

Pore Structure Characteristics of Taiyuan Formation(C3t) in Eastern Uplift of Liaohe Depression

ZHANG Qin1,2, PANG Zhenglian3, LIU Renhe1,2, MAO Junli4   

  1. 1. Langfang Branch, Research Institute of Petroleum Exploration & Development, PetroChina, Langfang, Hebei 065007, China;
    2. National Energy Shale Gas R & D(Experiment) Centre, Langfang, Hebei 065007, China;
    3. SINOPEC Petroleum Exploration and Production Research Insititute, Haidian, Beijing 100083, China;
    4. Exploration and Development Institute of Liaohe Oilfield, PetroChina, Panjin, Liaoning 124010, China
  • Received:2015-10-22 Online:2017-04-01 Published:2017-04-01
  • Contact: 张琴,E-mail:zhangqin2169@petrochina.com.cn

摘要: 以辽河拗陷东部凸起海陆过渡相石炭系太原组为例,观察、描述太原组岩芯并系统采集佟2905井样品及辽宁省盘锦市小市泉山煤矿样品。通过XRD衍射、高压压汞、低温液氮吸附、场发射扫描电镜等实验手段,全面刻画了海陆过渡相页岩孔隙发育形态和孔隙结构特征。压汞实验结果显示,页岩孔径呈双峰分布,双峰分布在10 100 nm与10 000 100 000 nm,其中孔径小于100 nm孔占主体。低温液氮吸附实验弥补了压汞实验在表征页岩小孔隙上的不足,对100 nm以下的孔隙进行了更为精细的划分,实验结果表明,中孔(10 50 nm)提供了主要的孔体积,占总孔体积的33.48% 43.96%。比表面积的分布与孔径大小呈负相关,极小孔(<2 nm)和小孔(2 10 nm)为比表面积的主要贡献者,提供的比表面积占整个比表面积的82.92% 91.58%,均值为87.36%。单因素分析结果表明,页岩的比表面积主要受控于黏土含量,其相关系数为0.901,有机质影响不明显。孔隙以四面开放的平行板状孔和狭缝状孔为主,这种开放纳米孔可提高页岩气解吸效率和储层渗透率,提高页岩气产量。

关键词: 太原组, 高压压汞, 低温液氮吸附, 孔隙结构

Abstract: This paper uses the Taiyuan Formation in the Eastern Uplift of the Liaohe Depression as an example to study transitional shale reservoir structures. Cores from well T2905 were observed and described, and samples systematically collected. XRD, high pressure mercury injection, nitrogen adsorption, and field emission scanning electronic microscope(FESEM) methods were adopted for analysis of pore characteristics including pore size, pore shape, and pore structure. Data from high pressure mercury injection showed a bimodal pore size distribution with a higher peak in the 10-100 nm range and a lower peak in the 10 000-100 000 nm range. Nitrogen adsorption can provide information on much smaller pores, so can help to precisely partition pores under 100 nm. Results from nitrogen adsorption indicated that mesopores(10-50 nm) provided the largest pore volume, accounting for 33.48%-43.96%. According to BET analysis, smaller pores provide less specific surface area. Extremely small pores(<2 nm) and micro-pores(2-10 nm) were the major contributors to specific surface area, accounting for 82.92%-91.58%, with an average 87.36%. The results from single factor analysis demonstrate that the specific surface area is not controlled by organic matter content but by clay mineral content, and the coefficient index is 0.901. The hysteresis loop from nitrogen adsorption and desorption can be used to determine pore shape; parallel-plated pores and slit-shaped pores were the main types identified. Such open nano-pores can improve shale gas desorbing efficiency and reservoir permeability, and enhance shale gas production.

Key words: Taiyuan Formation, high pressure mercury injection, low temperature nitrogen adsorption, pore structure

中图分类号: