[1] DUPRIEST F E. Fracture closure stress(FCS) and lost returns practices[C]. SPE 92192-MS, 2005. doi:10.2118/-92192-MS [2] 蒋官澄,张弘,吴晓波,等. 致密砂岩气藏润湿性对液相圈闭损害的影响[J]. 石油钻采工艺, 2014, 36(6):50-54. doi:10.13639/j.odpt.2014.06.013 JIANG Guancheng, ZHANG Hong, WU Xiaobo, et al. Effect of tight sandstone gas reservoir wettability on liquid traps damage[J]. Oil Drilling & Production Technology, 2014, 36(6):50-54. doi:10.13639/j.odpt.2014.06.013 [3] 王俊鹏,张荣虎,赵继龙,等. 超深层致密砂岩储层裂缝定量评价及预测研究——以塔里木盆地克深气田为例[J]. 天然气地球科学, 2014, 25(11):1735-1745. doi:10.11764/j.issn.1672-1926.2014.11.1735 WANG Junpeng, ZHANG Ronghu, ZHAO Jilong, et al. Characteristics and evaluation of fractures in ultra-deep tight sandstone reservoir:Taking Keshen Gas Field in Tarim Basin, NW China as an example[J]. Natural Gas Geoscience, 2014, 25(11):1735-1745. doi:10.11764/j.-issn.1672-1926.2014.11.1735 [4] QUTOB H, BYRNE M. Formation damage in tight gas reservoirs[C]. SPE 174237-MS, 2015. doi:10.2118/-174237-MS [5] 张惠良,张荣虎,杨海军,等. 超深层裂缝孔隙型致密砂岩储集层表征与评价——以库车前陆盆地克拉苏构造带白垩系巴什基奇克组为例[J]. 石油勘探与开发, 2014, 41(2):158-167. doi:10.11698/PED.2014.0204ZHANG Huiliang, ZHANG Ronghu, YANG Haijun, et al. Characterization and evaluation ofultra-deep fracturepore tight sandstone reservoirs:A case study of Cretaceous Bashijiqike Formation in Kelasu tectonic zone in Kuqa foreland Basin, Tarim, NW China[J]. Petroleum Exploration and Development, 2014, 41(2):158-167. doi:10.-11698/PED.2014.0204 [6] 曾义金,刘建立. 深井超深井钻井技术现状和发展趋势[J]. 石油钻探技术, 2005, 33(5):1-5. doi:10.3969/-j.issn.1001-0890.2005.05.001 ZENG Yijin, LIU Jianli. Technical status and developmental trend of drilling techniques in deep and ultra-deep wells[J]. Petroleum Drilling Techniques, 2005, 33(5):1-5. doi:10.3969/j.issn.1001-0890.2005.05.001 [7] 李永平,程兴生,张福祥,等. 异常高压深井裂缝性厚层砂岩储层"酸化+酸压"技术[J]. 石油钻采工艺, 2007, 32(3):76-80. doi:10.13639/j.odpt.2010.03.018 LI Yongping, CHENG Xingsheng, ZHANG Fuxiang, et al. Acid fracturing technology for thick fractured sandstone reservoir of deep wells with abnormal high pressure[J]. Oil Driling & Production Technology, 2007, 32(3):76-80. doi:10.13639/j.odpt.2010.03.018 [8] 肖鑫,王建民,刘兆龙,等. 库车坳陷克深9气藏储层特征及成岩作用研究[J]. 石油地质与工程, 2017, 31(1):26-29. XIAO Xin, WANG Jianming, LIU Zhaolong, et al. Study on reservoir characteristics and diagenesis of Keshen 9 gas reservoir in Kuqa Depression[J]. Petroleum Geology and Engineering, 2017, 31(1):26-29. [9] 张荣虎,张惠良,寿建峰,等. 库车坳陷大北地区下白垩统巴什基奇克组储层成因地质分析[J]. 地质科学, 2008, 43(3):507-517. doi:10.3321/j.issn:0563-5020.-2008.03.006 ZHANG Ronghu, ZHANG Huiliang, SHOU Jianfeng, et al. Geological analysis on reservoir mechanism of the Lower Cretaceous Bashijiqike Formation in Dabei Area of the Kuqa Depression[J]. Chinese Journal of Geology, 2008, 43(3):507-517. doi:10.3321/j.issn:0563-5020.-2008.03.006 [10] 屈海洲,张福祥,王振宇,等. 基于岩心电成像测井的裂缝定量表征方法——以库车坳陷ks2区块白垩系巴什基奇克组砂岩为例[J]. 石油勘探与开发, 2016, 43(3):425-432. doi:10.11696/PED.2016.03.13 QU Haizhou, ZHANG Fuxiang, WANG Zhenyu, et al. Quantitative fracture evaluation method based on coreimage logging:A case study of Cretaceous Bashijiqike Formation in ks2 well area, Kuqa Depression, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2016, 43(3):425-432. doi:10.11696/PED.2016.-03.13 [11] 张荣虎,张惠良,马玉杰,等. 特低孔特低渗高产储层成因机制——以库车坳陷大北1气田巴什基奇克组储层为例[J]. 天然气地球科学, 2008, 19(1):75-82. ZHANG Ronghu, ZHANG Huiliang, MA Yujie, et al. Origin of extra low porosity and permeability high production reseroirs:A case from Bashijiqike Reservoir of Dabei 1 Oilfield, Kuqa Depression[J]. Natural Gas Geoscience, 2008, 19(1):75-82. [12] BREGE J J, PIETRANGELI G A, MCKELLAR A J, et al. Fluid formulations for cleaning oil-based or synthetic oil-based mud filter cakes:U. S. Patent Application 14/478, 510[P]. United States Patent and Trademark Office, 2014-9-5. [13] 张虎俊. 青西油田深层复杂岩性裂缝性油藏储层改造关键技术研究与应用[D]. 成都:西南石油大学, 2009. ZHANG Hujun. Study and application of stimulatiing technology on deep fractured reservoir with complex lithology in Qingxi Oilfield[D]. Chengdu:Southwest Petroleum University, 2009. [14] 朱金智,游利军,李家学,等. 油基钻井液对超深裂缝性致密砂岩气藏的保护能力评价[J]. 天然气工业, 2017, 37(2):62-68. doi:10.3787/j.issn.1000-0976.2017.02.008 ZHU Jinzhi, YOU Lijun, LI Jiaxue, et al. Damage evaluation on oil-based drill-in fluids for ultra-deep fractured tight sandstone gas reservoirs[J]. Natural Gas Industry, 2017, 37(2):62-68. doi:10.3787/j.issn.1000-0976.-2017.02.008 [15] LAVROV A, TRONVOLL J. Mud loss into a single fracture during drilling of petroleum wells:Modeling approach[C]//Development and Application of Discontinuous Modelling for Rock Engineering:Proceedings of the 6th International Conference ICADD-6, Trondheim, Norway, 2003:189-198. [16] LAVTOV A, TRONVOLL J. Modeling mud loss in fractured formations[C]. SPE 88700-MS, 2004. doi:10.2118/-88700-MS [17] LAVTOV A. Newtonian fluid flow from an arbitrarilyoriented fracture into a single sink[J]. Acta Mechanica, 2006, 186(1-4):55-74. doi:10.1007/s00707-006-0324-9 [18] SANFILIPPO F, BRIGNOLI M, SANTARELLI F J, et al. Characterization of conductive fractures while drilling[C]. SPE 38177-MS, 1997. doi:10.2118/38177-MS [19] OZDEMIRTAS M, BABADAGLI T, KURU E. Effects of fractal fracture surface roughness on borehole ballooning[J]. Vadose Zone Journal, 2009, 8(1):250-257. doi:10.2136/vzj2007.0174 [20] OZDEMIRTAS M, KURU E, BABADAGLI T. Experimental investigation of borehole ballooning due to flow of non-Newtonian fluids into fractured rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(7):1200-1206. doi:10.1016/j.ijrmms.2010.07.002 [21] OZDEMIRTAS M, BABADAGLI T, KURU E. Experimental and numerical investigations of borehole ballooning in rough fractures[J]. SPE Drilling & Completion, 2009, 24(2):256-265. doi:10.2118/110121-PA [22] BROWN S R. Fluid flow through rock joints:The effect of surface roughness[J]. Journal of Geophysical Research:Solid Earth and Planets, 1987, 92(B2):1337-1347. doi:10.1029/JB092iB02p01337 [23] BROWN S R, STOCKMAN H W, REEVES S J. Applicability of the Reynolds equation for modeling fluid flow between rough surfaces[J]. Geophysical Research Letters, 1995, 22(18):2537-2540. doi:10.1029/95GL02666 [24] BROWN S R, SCHOLZ S H. Broad bandwidth study of the topography of natural rock surfaces[J]. Journal of Geophysical Research:Solid Earth and Planets, 1985, 90(B14):2575-2582. doi:10.1029/JB090iB14p12575 [25] 范翔宇,龚明,夏宏泉,等. 裂缝性致密砂岩储层钻井液侵入深度的定量计算方法[J]. 天然气工业, 2012, 32(6):110-111. doi:10.3787/j.issn.1000-0976.-2012.06.015 FAN Xiangyu, GONG Ming, XIA Hongquan, et al. A quantitative calculation method of the invasion depth of drilling fluids in fractured tight sandstone reservoir[J]. Nature Gas Industry, 2012, 32(6):110-111. doi:10.3787/j.-issn.1000-0976.2012.06.015 [26] 叶艳,安文华,滕学清,等. 裂缝性碳酸盐岩储层的钻井液侵入预测模型[J]. 石油学报, 2011, 32(3):504-508. YE Yan, AN Wenhua, TENG Xueqing, et al. The prediction model for the drilling fluid invasion in fractured carbonate reservoirs[J]. Acta Petrolei Sinica, 2011, 32(3):504-508. [27] 鄢捷年. 钻井液工艺学[M]. 北京:中国石油大学出版社, 2013:89-90. YAN Jienian. Drilling fluid technology[M]. Beijing:China Petroleum University Publishing House, 2013:89-90. [28] LIU Yuxuan, GUO Jianchun, CHEN Zhangxin. Leakoff characteristics and an equivalent leakoff coefficient in fractured tight gas reservoirs[J]. Journal of Natural Gas Science and Engineering, 2016, 31:603-611. doi:10.-1016/j.jngse.2016.03.054 [29] 练章华,康毅力,徐进,等. 裂缝宽度的有限元数值模拟[J]. 天然气工业, 2001, 21(3):47-50. doi:10.3321/-j.issn:1000-0976.2001.03.014 LIAN Zhanghua, KANG Yili, XU Jin, et al. Predicting fracture width by finite element numerical simulation[J]. Natural Gas Industry, 2001, 21(3):47-50. doi:10.3321/j.-issn:1000-0976.2001.03.014 [30] 练章华,康毅力,唐波,等. 井壁附近垂直裂缝宽度预测[J]. 天然气工业, 2003, 23(3):44-46. doi:10.3321/-j.issn:1000-0976.2003.03.013 LIAN Zhanghua, KANG Yili, TANG Bo, et al. Prediction of vertical fracture widths near borehole face of the wall[J]. Nature Gas Industry, 2003, 23(3):44-46. doi:10.3321/j.-issn:1000-0976.2003.03.013 [31] 童亨茂. 储层裂缝描述与预测研究进展[J]. 新疆石油学院学报, 2004, 16(2):9-13. doi:10.3969/j.issn.1673-2677.2004.02.003 TONG Hengmao. Description and prediction of reservoir fractures networks[J]. Journal of Xinjiang Petroleum Institute, 2004, 16(2):9-13. doi:10.3969/j.issn.1673-2677.-2004.02.003 |