西南石油大学学报(自然科学版) ›› 2019, Vol. 41 ›› Issue (4): 175-182.DOI: 10.11885/j.issn.1674-5086.2018.06.01.01

• 石油机械与油田化学 • 上一篇    

稠油硫酸盐热化学还原生成H2S实验研究

马强1, 林日亿1, 韩超杰2, 袁高亮3, 于万民3   

  1. 1. 中国石油大学(华东)储运与建筑工程学院, 山东 青岛 266580;
    2. 潍坊市市政工程设计研究院有限公司, 山东 潍坊 261061;
    3. 临沂市阳光热力有限公司, 山东 临沂 273411
  • 收稿日期:2018-06-01 出版日期:2019-08-10 发布日期:2019-08-10
  • 通讯作者: 林日亿,E-mail:linryupc.edu.cn
  • 作者简介:马强,1993年生,男,汉族,河北石家庄人,硕士,主要从事热力采油方面的研究。E-mail:593748293@qq.com;林日亿,1973月生,男,汉族,山东青岛人,教授,博士,主要从事热力采油和热能利用方面的教学和科研工作。E-mail:linryupc.edu.cn;韩超杰,1990年生,男,汉族,河南淮阳人,硕士,主要从事市政工程设计工作。E-mail:593057119@qq.com;袁高亮,1981年生,男,汉族,山东栖霞人,工程师,主要从事热能工程、节能降耗、设备管理及环保控制方面的研究工作。E-mail:ywc20012008@163.com;于万民,1969年生,男,汉族,山东莱州人,工程师,主要从事热能与动力工程方面的管理和研究工作。E-mail:13153917175@163.com
  • 基金资助:
    国家重大科技专项(2016ZX05012-002,2016ZX05053-012);山东省自然基金(ZR2017MEE030)

An Experimental Investigation of H2S Production by Thermochemical Sulfate Reduction in Heavy Oil

MA Qiang1, LIN Riyi1, HAN Chaojie2, YUAN Gaoliang3, YU Wanmin3   

  1. 1. College of Pipeline and Civil Engineering, China University of Petroleum(East China), Qingdao, Shandong 266580, China;
    2. Weifang Municipal Engineering Design Research Institute Co. Ltd., Weifang, Shandong 261061, China;
    3. Linyi Yangguang Heating Power Ltd., Linyi, Shandong 273411, China
  • Received:2018-06-01 Online:2019-08-10 Published:2019-08-10

摘要: 为了研究稠油注汽热采过程中生成H2S机理,以Na2SO4,CaSO4,MgSO4,Fe2(SO43,Al2(SO43与稠油硫酸盐热化学还原(TSR)实验为基础,探究稠油TSR生成H2S机理。实验表明,不同硫酸盐与稠油反应生成H2S不尽相同,硫酸盐的阳离子所带电荷数决定TSR反应程度的难易,电荷数越多越容易进行反应,且H2S生成量顺序为Al2(SO43>Fe2(SO43 > MgSO4 > CaSO4 > Na2SO4,但生成的烃量顺序为Fe2(SO43 > Al2(SO43 > MgSO4 > CaSO4 > Na2SO4。与其他硫酸盐不同的是,由于Fe2(SO43的氧化性,Fe3+可能与生成的H2S进一步反应。通过傅里叶红外变换光谱(FT-IR)对固相检测发现,不仅存在金属氧化物(CaO,MgO,Fe2O3,Al2O3)还存在FeS2。最后,通过对MgSO4油相硫含量的检测发现,反应后硫含量高于原油硫含量,证明了无机硫向有机硫的转化。

关键词: 稠油, TSR, H2S, 热化学, 机理

Abstract: The mechanism of H2S formation during heavy oil recovery by steam injection was investigated by reacting five sulfates (Na2SO4, CaSO4, MgSO4, Fe2(SO4)3, and Al2(SO4)3) with heavy oil via thermochemical sulfate reduction(TSR). Significant variations were observed in the production of H2S depending on the type of sulfate reacting with the heavy oil, as the number of charges carried by the sulfate cation governed the ease of the TSR reaction. More strongly charged sulfate cations facilitated the TSR reaction. The H2S yields of the sulfates followed the order:Al2(SO4)3 > Fe2(SO4)3 > MgSO4 > CaSO4 > Na2SO4. However, the hydrocarbon yields were as follows:Fe2(SO4)3 > Al2(SO4)3 > MgSO4 > CaSO4 > Na2SO4. Fe2(SO4)3 is unique among the sulfates as it can react with H2S due to its oxidizing property. The solid-state Fourier transform infrared spectroscopy (FTIR) analyses showed that FeS2 was present in addition to several metal oxides (CaO, MgO, Fe2O3, and Al2O3). Finally, the sulfur content of the oil phase with the TSR reaction of MgSO4 was analyzed, and it was demonstrated that the post-TSR sulfur content of the oil phase was higher than that of crude oil. This confirmed that inorganic sulfur was converted to organic sulfur during the TSR reaction in heavy oil.

Key words: heavy oil, TSR, H2S, thermochemistry, mechanism

中图分类号: