[1] 黄建东, 孙守港, 陈宗义, 等. 低渗透油田注空气提高采收率技术[J]. 油气地质与采收率, 2001, 8(3):79-81. doi:10.3969/j.issn.1009-9603.2001.03.026 HUANG Jiandong, SUN Shougang, CHEN Zongyi, et al. Air injection EOR technology in low permeability oilfield[J]. Petroleum Geology and Recovery Efficiency, 2001, 8(3):79-81. doi:10.3969/j.issn.1009-9603.2001.03.026
[2] PASCUAL M, CROSTA D, LACENTRE P, et al. Air injection into a mature waterflooded light oil reservoir:Laboratory and simulation results for Barrancas Field, Argentina[C]. SPE 94092-MS, 2005. doi:10.2118/94092MS
[3] REN S R, GREAVES M, RATHBONE R R. Air injection LTO progress:An IOR technique for light-oil reservoirs[J]. SPE Journal, 2002, 7(1):90-99. doi:10.2118/57005-PA
[4] 于洪敏, 任韶然, 王杰祥, 等. 胜利油田注空气提高采收率数模研究[J]. 石油钻采工艺, 2008, 30(3):105-109. doi:10.13639/j.odpt.2008.03.026 YU Hongmin, REN Shaoran, WANG Jiexiang, et al. Numerical simulation study on enhanced oil recovery by air injection process in Shengli Oilfield[J]. Oil Drilling & Production Technology, 2008, 30(3):105-109. doi:10.13639/j.odpt.2008.03.026
[5] 岳湘安, 王尤富, 王克亮. 提高石油采收率基础[M]. 北京:石油工业出版社, 2007:94-95. YUE Xiang'an, WANG Youfu, WANG Keliang. Basis of enhanced oil recovery[M]. Beijing:Petroleum Industry Press, 2007:94-95.
[6] GREAVES M, REN S R, XIA T X. New air injection technology for IOR operations in light and heavy oil reservoirs[C]. SPE 57295-MS, 1999. doi:10.2523/57295-MS
[7] 王其伟. 泡沫驱油发展现状及前景展望[J]. 石油钻采工艺, 2013, 35(2):94-97. doi:10.13639/j.odpt.2013.02.027 WANG Qiwei. Present situation and development prospect of foam flooding[J]. Oil Drilling & Production Technology, 2013, 35(2):94-97. doi:10.13639/j.odpt.2013.02.027
[8] 兰玉波, 刘春林, 赵永胜. 大庆油田泡沫复合驱矿场试验评价研究[J]. 天然气工业, 2006, 26(6):102-104. doi:10.3321/j.issn:1000-0976.2006.06.033 LAN Yubo, LIU Chunlin, ZHAO Yongsheng. Evaluation and study of field test for foam-polymer flooding in Daqing Oilfield[J]. Natural Gas Industry, 2006, 26(6):102-104. doi:10.3321/j.issn:1000-0976.2006.06.033
[9] 赵长久, 杨振宇, 么世椿, 等. 萨北油田北二区泡沫复合驱矿场试验[J]. 油气地质与采收率, 2003, 10(1):58-59. doi:10.3969/j.issn.1009-9603.2003.01.022 ZHAO Changjiu, YANG Zhenyu, ME Shichun, et al. Field experiment of ASP foam combination flooding in Bei 2 Area of Sabei Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2003, 10(1):58-59. doi:10.3969/j.issn.1009-9603.2003.01.022
[10] 王晓燕, 刘莉君. 胶质气体泡沫(CGA)特性优化试验研究[J]. 环境科学与技术, 2006, 29(1):37-39. doi:10.3969/j.issn.1003-6504.2006.01.016 WANG Xiaoyan, LIU Lijun. Optimization of characteristics for colloidal gas aphrons[J]. Environmental Science & Technology, 2006, 29(1):37-39. doi:10.3969/j.issn.1003-6504.2006.01.016
[11] 王湛. 胶质气体泡沫的制备及其驱油性能的研究[D]. 青岛:中国石油大学(华东), 2011. doi:10.7666/d.y1876474 WANG Zhan. Preparation of colloidal gas aphron and its properties study on oil displacement[D]. Qingdao:China University of Petroleum (East China), 2011. doi:10.7666/d.y1876474
[12] 刁素, 蒲万芬, 黄禹忠, 等. 新型耐温抗高盐驱油泡沫体系的确定[J]. 西南石油大学学报, 2007, 29(3):91-93. doi:10.3863/j.issn.1674-5086.2007.03.025 DIAO Su, PU Wanfen, HUANG Yuzhong, et al. The new oil-flooding foam system of tempreature-resistance and high salt-resistance[J]. Journal of Southwest Petroleum University, 2007, 29(3):91-93. doi:10.3863/j.issn.1674-5086.2007.03.025
[13] 刘凯, 王前荣, 王维波. 微泡沫提高采收率技术研究进展[J]. 应用化工, 2017, 46(6):1204-1209. doi:10.16581/j.cnki.issn1671-3206.20170505.011 LIU Kai, WANG Qianrong, WANG Weibo. Micro-foam EOR research progress[J]. Applied Chemical Industry, 2017, 46(6):1204-1209. doi:10.16581/j.cnki.issn1671-3206.20170505.011
[14] TELMADARREIE A, DOTA A, KURU E, et al. CO2 microbubbles-A potential fluid for enhanced oil recovery:Bulk and porous media studies[J]. Journal of Petroleum and Science and Engineering, 2016, 138:160-173. doi:10.1016/j.petrol.2015.10.035
[15] ZIMMERMAN W B, TESAR V H C, BANDULASENA H. Towards energy efficient nanobubble generation with fluidic oscillation[J]. Current Opinion in Colloid & Interface Science, 2011, 16(4):350-356. doi:10.1016/j.cocis.2011.01.010
[16] USHIKUBO F Y, FUMKAWA T, NAKAGAWA R, et al. Evidence of the existence and the stability of nano-bubbles in water[J]. Colloids and Surfaces A:Physicochem Engineering Aspects, 2010, 361(103):31-37. doi:10.1016/j.colsurfa.2010.03.005
[17] SHI Shenglong, WANG Yefei, LI Zhongpeng, et al. Laboratory investigation of the factors impact on bubble size, pore blocking and enhanced oil recovery with aqueous colloidal gas aphron[J]. Journal of Petroleum Exploration and Production Technology, 2016, 6:409-417. doi:10.1007/s13202-015-0193-7
[18] 邓超, 杨丽, 陈海军, 等. 微纳米气泡发生装置及其应用的研究进展[J]. 石油化工, 2014, 43(10):1206-1213. doi:10.3969/j.issn.1000-8144.2014.10.018 DENG Chao, YANG Li, CHEN Haijun, et al. Progresses in research and application of micro-nano bubble generating device[J]. Petrochemical Technology, 2014, 43(10):1206-1213. doi:10.3969/j.issn.1000-8144.2014.10.018
[19] CHEN Qi, LI Jingkun, SONG Yu, et al. Modeling of newtonian droplet formation in power-law non-Newtonian fluids in a flow-focusing device[J]. Heat Mass Transfer, 2020, 56:2711-2723. doi:10.1007/s00231-020-02899-6
[20] MASTIANI M, MOSAVATI B, MYEONGSUB K. Numerical simulation of high inertial liquid-in-gas droplet in a T-junction microchannel[J]. Rsc Advances, 2017, 77(7):48512-48525. doi:10.1039/C7RA09710G |