[1] JACQUARD P. Permeability distribution from field pressure data[C]. SPE 1307-PA, 1965. doi:10.2118/1307-PA [2] THOMAS L K, HELLUMS L J, REHEIS G M. A nonlinear automatic history matching technique for reservoir simulation models[C]. SPE 3475-PA, 1972. doi:10.2118/3475-PA [3] CHEN W H, GAVALAS G R, SEINFELD J H, et al. A new algorithm for automatic history matching[C]. SPE 4545-PA, 1974. doi:10.2118/4545-PA [4] GAVALAS G R, SHAH P C, SEINFELD J H. Reservoir history matching by bayesian estimation[C]. SPE 5740-PA, 1976. doi:10.2118/5740-PA [5] OUENES A, BREFORT B, MEUNIER G, et al. A new algorithm for automatic history matching:Application of simulated annealing method (SAM) to reservoir inverse modeling[C]. SPE 26297-PA, 1993. doi:10.2118/26297-PA [6] 王曙光, 郭德志. Nelder-Mead单纯形法的推广及其在自动历史拟合中的应用[J]. 大庆石油地质与开发, 1998, 17(4):25-27. WANG Shuguang, GUO Dezhi. Extension of Nelder-Mead simplex method and its application in automatic history fitting[J]. Petroleum Geology and Development in Daqing, 1998, 17(4):25-27. [7] ZHANG F J, SKJERVHEIM J A, REYNOLDS A C, et al. Automatic history matching in a Bayesian framework, example applications[C]. SPE 84461-PA, 2003. doi:10.2118/84461-PA [8] CHOUDHARY M. Generation of multiple history match models using multistart optimization[D]. Stanford:Stanford University, 2012. [9] 冯国庆, 何玉俊, 刘红林, 等.利用试井数据约束的随机地质建模方法[J].石油地球物理勘探, 2020, 55(2):435-441. doi:10.13810/j.cnki.issn.1000-7210.2020.02.023 FENG Guoqing, HE Yujun, LIU Honglin, et al. Stochastic geological modeling constrained by well test data[J]. Oil Geophysical Prospecting, 2020, 55(2):435-441. doi:10.13810/j.cnki.issn.1000-7210.2020.02.023 [10] PARK H, SCHEIDT C, FENWICK D, et al. History matching and uncertainty quantification of facies models with multiple geological interpretations[J]. Computational Geosciences, 2013, 17(4):609-621. doi:10.1007/s10596-013-9343-5 [11] SUN W, VINK J C, GAO G. A practical method to mitigate spurious uncertainty reduction in history matching workflows with imperfect reservoir models[C]. SPE 182599-MS, 2017. doi:10.2118/182599-MS [12] WANG Jianzhong. Geometric structure of high-dimensional data and dimensionality reduction[M]. Beijing:Higher Education Press, 2012. doi:10.1007/978-3-642-27497-8_3 [13] TENENBAUM J B, SILVA V, UNGFORD J C. A global geometrie framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500):2319-2323. doi:10.1126/science.290.5500.2319 [14] ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500):2323-2326. doi:10.1126/science.290.5500.2323 [15] WOLD S, ESBENSEN K H, GELADI P. Principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987, 2(1-3):37-52. doi:10.1016/0169-7439(87)80084-9 [16] HOTELLING H. Analysis of a complex of statistical variables into principal components[J]. Journal of Educational Psychology, 1933, 24(6):417-441. doi:10.1037/h0071325 [17] PARK H S, JUN C H. A simple and fast algorithm for K-medoids clustering[J]. Expert Systems with Applications, 2009, 36(2):3336-3341. doi:10.1016/j.eswa.2008.01.039 [18] 谢娟英, 郭文娟, 谢维信. 基于邻域的K中心点聚类算法[J]. 陕西师范大学学报(自然科学版), 2012, 40(4):16-22. doi:10.3969/j.issn.1672-4291.2012.04.005 XIE Juanying, GUO Wenjuan, XIE Weixin. A neighborhood-based K-medoids clustering algorithm[J]. Journal of Shaanxi Normal University (Natural Science Edition), 2012, 40(4):16-22. doi:10.3969/j.issn.1672-4291.2012.04.005 [19] SPALL J C. Implementation of the simultaneous perturbation algorithm for stochastic optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(3):817-823. doi:10.1109/7.705889 [20] 赵辉, 曹琳, 李阳, 等. 基于改进随机扰动近似算法的油藏生产优化[J]. 石油学报, 2011, 32(6):1031-1036. ZHAO Hui, CAO Lin, LI Yang, et al. Production optimization of oil reservoirs based on an improved simulaneous perturbation stochastic approximation algorithm[J]. Acta Petrolei Sinica, 2011, 32(6):1031-1036. [21] CHEN Y, OLIVER D S. Ensemble-based closed-loop optimization applied to Brugge Field[C]. SPE 118926-PA, 2010. doi:10.2118/118926-PA |