[1] 杨立云, 王青成, 王宇伟, 等. 材料线弹性断裂力学的断裂准则研究进展[J]. 科技导报, 2020, 38(2):59-68. YANG Liyun, WANG Qingcheng, WANG Yuwei, et al. Research progress of fracture criteria in linear elastic fracture mechanics of materials. Science & Technology Review, 2020, 38(2):59-68. [2] ERDOGAN F, SIH G C. On the crack extension in plates under plane loading and transverse shear[J]. Journal of Basic Engineering, 1963, 85(4):519-525. [3] SIH G C. Some basic problems in fracture mechanics and new concepts[J]. Engineering Fracture Mechanics, 1973, 5(2):365-377. doi:10.1016/0013-7944(73)90027-1 [4] NUISMER R J. An energy release rate criterion for mixed mode fracture[J]. International Journal of Fracture, 1975, 11(2):245-250. doi:10.1007/BF00038891 [5] SMITH D J, Ayatollahi M R, Pavier M J. The role of Tstress in brittle fracture for linear elastic materials under mixed-mode loading[J]. Fatigue & Fracture of Engineering Materials & Structures, 2001, 24(2):137-150. doi:10.1046/j.1460-2695.2001.00377.x [6] 侯成, 王志勇, 王志华. 基于修正最大切向应力准则的含中心直裂纹混凝土圆盘断裂行为研究[J]. 中国科学:技术科学, 2016, 46(4):377-386. doi:10.1360/N092015-00374 HOU Cheng, WANG ZhiYong, WANG ZhiHua. Fracture behaviors of concrete CSTBD specimens by the modified MTS criterion under the condition of compression loading[J]. Scientia Sinica(Technologica), 2016, 46(4):377-386. doi:10.1360/N092015-00374 [7] 靳松洋, 刘辉. T应力分量对压剪闭合裂纹张拉起裂角的影响研究[J]. 人民珠江, 2020, 41(8):68-74. doi:10.3969/j.issn.1001-9235.2020.08.010 JIN Songyang, LIU Hui. Study on the influence of T-stress component on the tensile initiation angle of compressionshear closed crack[J]. Pearl River 2020, 41(8):68-74. doi:10.3969/j.issn.1001-9235.2020.08.010 [8] 华文, 董世明, 徐积刚. 复合型加载条件下锈岩断裂韧度试验研究[J]. 岩土力学, 2016, 37(3):753-758. doi:10.16285/j.rsm.2016.03.018HUA Wen, DONG Shiming, XU Jigang. Experimental research on fracture toughness of rust stone under mixed mode loading conditions[J]. Rock and Soil Mechanics, 2016, 37(3):753-758. doi:10.16285/j.rsm.2016.03.018 [9] 刘红岩. 考虑T应力的岩石压剪裂纹起裂机理[J]. 岩土工程学报, 2019, 41(7):1296-1302. doi:10.11779/CJGE201907014 LIU Hongyan. Initiation mechanism of cracks of rock in compression and shear considering T-stress[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7):1296-1302. doi:10.11779/CJGE201907014 [10] LI X X, LIANG Y P, LUO Y J, et al. Predicting hydraulic fracture propagation based on maximum energy release rate theory with consideration of T-stress[J]. Fuel, 2020, 269(1):117337. doi:10.1016/j.fuel.2020.117337 [11] 王俊杰, 黄诗渊, 郭万里, 等. 考虑裂缝几何特性和T应力的类岩石材料压剪张拉断裂准则[J]. 岩土工程学报, 2020, 42(9):1622-1631. doi:10.11779/CJGE202009006 WANG Junjie, HUANG Shiyuan, GUO Wanli, et al. Compression-shear tension fracture criteria for rock-like materials considering geometric characteristics of cracks and T-stresses[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9):1622-1631. doi:10.11779/CJGE202009006 [12] WILLIAMS M L. On the stress distribution at the base of a stationary crack[J]. ASME Journal of Applied Mechanics, 1957(24):109-114. [13] AYATOLLAHI M R, AKBARDOOST J. Size effects on fracture toughness of quasi-brittle materials a new approach[J]. Engineering Fracture Mechanics, 2012(92):89-100. doi:10.1016/j.engfracmech.2012.06.005 [14] 赵艳华, 徐世烺. I-II复合型裂纹脆性断裂的最小J2准则[J]. 工程力学, 2002, 19(4):94-98. doi:10.3969/j.issn.1000-4750.2002.04.020 ZHAO Yanhua, XU Shilang. The minimum J2 criterion for I-II mixed mode brittle fracture[J]. Engineering Mechanics, 2002, 19(4):94-98. doi:10.3969/j.issn.1000-4750.2002.04.020 [15] AYATOLLAHI M R, RASHIDI M M, Berto F. A generalized strain energy density criterion for mixed mode fracture analysis in brittle and quasi-brittle materials[J]. Theoretical and Applied Fracture Mechanics, 2015(79):70-76. doi:10.1016/j.tafmec.2015.09.004 [16] AYATOLLAHI M R, RAZAVIS M J, MOGHADDAM M R, et al. Mode I fracture analysis of polymethylmetacrylate using modified energy-based models[J]. Physical Mesomechanics, 2015, 18(4):326-336. doi:10.1134/S1029959915040050 [17] STACEY T R. A simple extension strain criterion for fracture of brittle rock[J]. International Joural of Rock Mechanics and Mining Sciences, 1981(18):469-474. [18] CHANG K J. On the maximum strain criterion-a new approach to the angled crack problem[J]. Engineering Fracture Mechanics, 1981(14):107-124. [19] 李一凡, 董世明, 李念斌, 等. 基于应变的I/II/III复合型断裂准则[J]. 应用数学和力学, 2017, 38(4):447-456. doi:10.21656/1000-0887.370212 LI Yifan, DONG Shiming, LI Nianbin, et al. A strainbased criterion for general I/II/III mixed mode cracks[J]. Applied Mathematics and Mechanics, 2017, 38(4):447-456. doi:10.21656/1000-0887.370212 [20] 邓宗才, 卢云斌, 李宗利, 等. 混凝土复合型裂缝最大拉应变断裂准则[J]. 西北农业大学学报, 1999, 27(1):46-49. doi:10.3321/j.issn:1671-9387.1999.01.010 DENG Zongcai, LU Yunbin, LI Zongli, et al. The maximum circumferential strain fracture criterion for mixed mode of concrete[J]. Acta Univ. Agric. Boreali-occidentalis, 1999, 27(1):46-49. doi:10.3321/j.issn:1671-9387.1999.01.010 [21] Ayatollahi M R, Abbasi H. Prediction of fracture using a strain based mechanism of crack growth[J]. Building Research Journal, 2001, 49(3):167-180. [22] Mirsayar M M. Mixed mode fracture analysis using extended maximum tangential strain criterion[J]. Materials & Design, 2015(86):941-947. [23] HUA W, DONG S M, PAN X, et al. Mixed mode fracture analysis of CCBD specimens based on the extended maximum tangential strain criterion[J]. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40(12):2118-2127. [24] DONG S M, WANG Y, XIA Y M. Stress intensity factors for central cracked circular disk subjected to compression[J]. Engineering Fracture Mechanics, 2004, 71(8):1135-1148. [25] HUA W, LI Y F, DONG S M, et al. T-stress for a centrally cracked Brazilian disk under confining pressure[J]. Engineering Fracture Mechanics, 2015(149):37-44. doi:10.1016/j.engfracmech.2015.09.048 [26] 李一凡, 董世明, 华文. 中心裂纹巴西圆盘压缩载荷下T应力研究[J]. 岩土力学, 2016, 37(11):3191-3196. doi:10.16285/j.rsm.2016.11.19 LI Yifan, DONG Shiming, HUA Wen. T-stress for central cracked Brazilian disk subjected to compression[J]. Rock and Soil Mechanics, 2016, 37(11):3191-3196. doi:10.16285/j.rsm.2016.11.19 [27] HUA W, LI J X, DONG S M, et al. Experimental study on mixed mode fracture behavior of sandstone under water-rock interactions[J]. Processes, 2019, 7(2):70. doi:10.3390/pr7020070 [28] HUA W, DONG S M, PENG F, et al. Experimental investigation on the effect of wetting-drying cycles on mixed mode fracture toughness of sandstone[J]. International Journal of Rock Mechanics and Mining Sciences, 2017(93):242-249. doi:10.1016/j.ijrmms.2017.01.017 [29] KHAN K, Alshayea N A. Effect of specimen geometry and testing method on mixed mode I-II fracture toughness of a limestone rock from Saudi Arabia[J]. Rock Mechanics and Rock Engineering, 2000, 33(3):179-206. [30] ALIHA M R M, SAGHAFI H. The effects of thickness and Poisson's ratio on 3D mixed-mode fracture[J]. Engineering Fracture Mechanics, 2013(98):15-28. |