[1] 李大奇, 康毅力, 刘修善, 等. 基于漏失机理的碳酸盐岩地层漏失压力模型[J]. 石油学报, 2011, 32(5):900-904. doi:10.7623/syxb201105026 LI Daqi, KANG Yili, LIU Xiushan, et al. The lost circulation pressure of carbonate formations on the basis of leakage mechanisms[J]. Acta Petrolei Sinica, 2011, 32(5):900-904. doi:10.7623/syxb201105026 [2] 王明波, 郭亚亮, 方明君, 等. 裂缝性地层钻井液漏失动力学模拟及规律[J]. 石油学报, 2017, 38(5):597-606. doi:10.7623/syxb201705013 WANG Mingbo, GUO Yaliang, FANG Mingjun, et al. Dynamics simulation and laws of drilling fluid loss in fractured formations[J]. Acta Petrolei Sinica, 2017, 38(5):597-606. doi:10.7623/syxb201705013 [3] 舒刚, 孟英峰, 李皋, 等. 重力置换式漏喷同存机理研究[J]. 石油钻探技术, 2011, 39(1):6-11. doi:10.3969/j.issn.1001-0890.2011.01.002 SHU Gang, MENG Yingfeng, LI Gao, et al. Mechanism of mud loss and well kick due to gravity displacement[J]. Petroleum Drilling Techniques, 2011, 39(1):6-11. doi:10.3969/j.issn.1001-0890.2011.01.002 [4] 徐宝昌, 孟宇, 刘伟. 控压钻井井下不可测变量的非线性估计[J]. 石油学报, 2016, 37(12):1543-1549. doi:10.7623/syxb201612010 XU Baochang, MENG Yu, LIU Wei. Nonlinear estimation of the down-hole unmeasurable variables in the managed pressure drilling system[J]. Acta Petrolei Sinica, 2016, 37(12):1543-1549. doi:10.7623/syxb201612010 [5] 曾明昌, 曾时田, 毛建华. 气井喷漏同存的处理技术研究[J]. 天然气工业, 2005, 25(6):42-44. doi:10.3321/j.issn:1000-0976.2005.06.012 ZENG Mingchang, ZENG Shitian, MAO Jianhua. Trating technioues of blowout-lost circulation conexistence in gas hole drilling[J]. Natural Gas Industry, 2005, 25(6):42-44. doi:10.3321/j.issn:1000-0976.2005.06.012 [6] 张兴全, 周英操, 刘伟, 等. 碳酸盐岩地层重力置换气侵特征[J]. 石油学报, 2014, 35(5):958-962. doi:10.7623/syxb201405017 ZHANG Xingquan, ZHOU Yingcao, LIU Wei, et al. Characters of gravity replacement gas kick in carbonate formation[J]. Acta Petrolei Sinica, 2014, 35(5):958-962. doi:10.7623/syxb201405017 [7] 张兴全, 周英操, 刘伟, 等. 欠平衡气侵与重力置换气侵特征及判定方法[J]. 中国石油大学学报(自然科学版), 2015, 39(1):95-102. doi:10.3969/j.issn.1673-5005.2015.01.014 ZHANG Xingquan, ZHOU Yingcao, LIU Wei, et al. A method for characterization and identification of gas kicks caused by underbalanced pressure and gravity displacement[J]. Journal of China University of Petroleum (Edition of Natural Science), 2015, 39(1):95-102. doi:10.3969/j.issn.1673-5005.2015.01.014 [8] 杨顺辉. 可视化重力置换室内模拟装置的研制与应用[J]. 石油机械, 2015, 43(3):96-99. doi:10.16082/j.cnki.issn.1001-4578.2015.03.021 YANG Shunhui. Development and application of lab simulation devices for visualized gravity displacement[J]. China Petroleum Machinery, 2015, 43(3):96-99. doi:10.16082/j.cnki.issn.1001-4578.2015.03.021 [9] OZDEMIRTAS M, BABADAGLI T, KURU E. Experimental and numerical investigations of borehole ballooning in rough fractures[C]. SPE 110121-PA, 2009. doi:10.2118/110121-PA [10] 林雍森. 深水井控中地层呼吸效应的识别与处理探讨[J]. 海洋石油, 2014, 34(1):72-76. doi:10.3969/j.issn.1008-2336.2014.01.072 LIN Yongsen. Discussion on identifying and handling of formation ballooningin deep water well control[J]. Offshore Oil, 2014, 34(1):72-76. doi:10.3969/j.issn.1008-2336.2014.01.072 [11] 孔祥伟, 林元华, 邱伊婕. 控压钻井重力置换与溢流气侵判断准则分析[J]. 应用力学学报, 2015, 32(2):317-322. doi:10.11776/cjam.32.02.A012 KONG Xiangwei, LIN Yuanhua, QIU Yijie. Research of mechanism for the gas invasion and gravity replacement in drilling operations[J]. Chinese Journal of Applied Mechanics, 2015, 32(2):317-322. doi:10.11776/cjam.32.02.A012 [12] 戴成, 李皋, 肖东, 等. 裂缝气液重力置换的流动实验及仿真[J]. 应用力学学报, 2020, 37(1):195-199. doi:10.11776/cjam.37.01.A037 DAI Cheng, LI Gao, XIAO Dong, et al. Flow experiment and simulation of fracture gas-liquid gravity displacement[J]. Chinese Journal of Applied Mechanics, 2020, 37(1):195-199. doi:10.11776/cjam.37.01.A037 [13] 赵向阳, 孟英峰, 侯绪田, 等. 沥青质稠油与钻井液重力置换规律与控制技术[J]. 石油钻采工艺, 2016, 38(5):622-627. doi:10.13639/j.odpt.2016.05.015 ZHAO Xiangyang, MENG Yingfeng, HOU Xutian, et al. Pattern and control of gravity displacement between asphaltic heavy oil and drilling fluid[J]. Oil Drilling & Production Technology, 2016, 38(5):622-627. doi:10.13639/j.odpt.2016.05.015 [14] 路保平, 侯绪田, 邢树宾. 伊朗雅达油田沥青层置换机制与压力波动分析[J]. 中国石油大学学报(自然科学版), 2017, 41(6):88-93. doi:10.3969/j.issn.1673-5005.2017.06.010 LU Baoping, HOU Xutian, XING Shubin. Asphalt dis-placement mechanism and pore pressure fluctuation in Yadavaran Oilfield, Iran[J]. Journal of China University of Petroleum (Edition of Natural Science), 2017, 41(6):88-93. doi:10.3969/j.issn.1673-5005.2017.06.010 [15] PETERSEN J, ROMMETVEIT R, TARR B. Kick with lost circulation simulator, a tool for design of complex well control situations[C]. SPE 49956-MS, 1998. [16] 郑述全, 欧云东, 曾明昌, 等. 高含硫喷漏同存气井钻井与完井工艺技术研究[J]. 天然气工业, 2006, 26(9):65-67. doi:10.3321/j.issn:1000-0976.2006.09.019 ZHENG Shuquan, OU Yundong, ZENG Mingchang, et al. Study on drilling and completion technology applied to high sulfur-content gas wells where well kicks and losses conexist[J]. Natural Gas Industry, 2006, 26(9):65-67. doi:10.3321/j.issn:1000-0976.2006.09.019 [17] 刘绘新, 李锋. 裂缝性储层井控技术体系探讨[J]. 天然气工业, 2011, 31(6):77-80. doi:10.3787/j.issn.1000-0976.2011.06.016 LIU Huixin, LI Feng. Well control technologies for fractured gas reservoirs[J]. Natural Gas Industry, 2011, 31(6):77-80. doi:10.3787/j.issn.1000-0976.2011.06.016 [18] XIAO Dong, MENG Yingfeng, ZHAO Xiangyang, et al. Liquid-liquid gravity displacement in a vertical fracture during drilling:Experimental study and mathematical model[J]. Energy Exploration & Exploitation, 2019, 38(2):533-554. doi:10.1177/0144598719874467 [19] XIAO Dong, MENG Yingfeng, LI Gao, et al. Development of a mathematical model and experimental validation of borehole instability due to gravity displacement during drilling in a fractured formation[J]. Journal of Petroleum Science and Engineering, 2018, 168:217-225. doi:10.1016/j.petrol.2018.05.030 [20] JEONG W C, SONG J W. Numerical investigations for flow and transport in a rough fracture with a hydromechanical effect[J]. Energy Sources, 2005, 27(11):997-1011. doi:10.1080/00908310490450827 [21] BAGHBANAN A, JING L. Stress effects on permeability in a fractured rock mass with correlated fracture length and aperture[J]. International Journal of Rock Mechanics & Mining Sciences, 2008, 45(8):1320-1334. doi:10.1016/j.ijrmms.2008.01.015 [22] IVARS D M. Water inflow into excavations in fractured rock:A three-dimensional hydro-mechanical numerical study[J]. International Journal of Rock Mechanics & Mining Sciences, 2006, 43(5):705-725. doi:10.1016/j.ijrmms.2005.11.009 [23] IWAI K. Fundamental studies of the fluid flow through a single fracture[D]. Berkeley:University of California at Berkeley, 1977. doi:10.1016/0148-9062(79)90543-6 [24] 杨顺辉, 赵向阳, 豆宁辉, 等. 基于真实裂缝的井筒地-层耦合流动试验装置研制[J]. 科学技术与工程, 2018, 18(10):35-41. doi:10.3969/j.issn.1671-1815.2018.10.006 YANG Shunhui, ZHAO Xiangyang, DOU Ninghui, et al. The test device development of wellbore-formation coupling flow based on real fracture[J]. Science Technology and Engineering, 2018, 18(10):35-41. doi:10.3969/j.issn.1671-1815.2018.10.006 |