[1] WU Zhenqiang, HU Daoxiong, XUE Xiaojun, et al. The study of engineering logging technology and its application in Zhunger Basin of Xinjiang[J]. Logging Engineering, 2009, 20(4): 1-5, 21. doi: 10.3969/j.issn.1672-9803.2009.04.001 吴振强, 胡道雄, 薛晓军, 等. 工程录井技术研究及其在准噶尔盆地的应用[J]. 工程录井, 2009, 20(4): 1-5, 21. doi:10.3969/j.issn.1672-9803.2009.04.001 [2] MA Quanyou, ZHANG Dai'e. Overview of drilling technology in the southern margin of Junggar Basin[J]. Technology and Enterprise, 2015(1): 135, 137. doi: 10.3969/j.issn.1004-9207.2015.01.123 马全友, 张代娥. 准噶尔盆地南缘地区钻井技术概述[J]. 科技与企业, 2015(1): 135, 137. doi:10.3969/j.issn.1004-9207.2015.01.123 [3] LUO Xiaorong, XIAO Lixin, LI Xueyi, et al. Abnormal pressure distribution and influencing factors in the middle section of the southern margin of the Junggar Basin[J]. Earth Science—Journal of China University of Geosciences, 2004, 29(4): 404-412. doi: 10.3321/j.issn:1000-2383.2004.04.005 罗晓容, 肖立新, 李学义, 等. 准噶尔盆地南缘中段异常压力分布及影响因素[J]. 地球科学(中国地质大学学报), 2004, 29(4): 404-412. doi:10.3321/j.issn:1000-2383.2004.04.005 [4] ZENG Wuqiang, ZHENG Jixuan, FENG Caili, et al. Drilling technology for highly difficult deep wells in piedmont structures on the southern margin of Junggar Basin[J]. Natural Gas Industry, 2000, 20(1): 44-47. doi: 10.3321/j.issn:1000-0976.2000.01.011 曾武强, 郑基烜, 冯才立, 等. 准噶尔盆地南缘山前构造高难度深井钻井工艺技术[J]. 天然气工业, 2000, 20(1): 44-47. doi:10.3321/j.issn:1000-0976.2000.01.011 [5] YAO Liangxiu. Research and application of key drilling techniques in Junggar Basin[D]. Xi'an: Xi'an Shiyou University, 2010. 姚良秀. 准噶尔盆地钻井关键技术研究与应用[D]. 西安: 西安石油大学, 2010. [6] SHAO Ping, ZHANG Wei, ZHOU Huaan, et al. Drilling fluid technology for the key ultra-deep exploration Well DF1 in the southern margin of Junggar[J]. Drilling and Production Technology, 2014, 37(4): 87-90. doi:10.3969/J.ISSN.1006-768X.2014.04.27J.ISSN.1006-768X.2014.04.27 邵平, 张伟, 周华安, 等. 准噶尔南缘重点超深探井DF1井钻井液技术[J]. 钻采工艺, 2014, 37(4): 87-90. doi:10.3969/J.ISSN.1006-768X.2014.04.27 [7] SHI Jiangang. Research and application of drilling technology for ultra-deep wells in the southern margin of Junggar Basin[J]. Journal of Oil and Gas Technology, 2014, 36(12): 127-130. doi: 10.3969/j.issn.1000-9752.2014.12.031 石建刚. 准噶尔盆地南缘下组合超深井钻井技术研究与应用[J]. 石油天然气学报, 2014, 36(12): 127-130. doi:10.3969/j.issn.1000-9752.2014.12.031 [8] MA Tianshou, XIANG Guofu, LIN Zhaoyong, et al. Wellbore stability mechanism and drilling fluid safety density window of horizontal well in lacustrine shale: A case study on the Jurassic Da'anzhai Member in the Sichuan Basin[J]. Natural Gas Industry, 2021, 41(9): 114-124. doi: 10.3787/j.issn.1000-0976.2021.09.012 马天寿, 向国富, 林兆勇, 等. 湖相页岩水平井井壁稳定机理及钻井液安全密度窗口—以四川盆地侏罗系大安寨段为例[J]. 天然气工业, 2021, 41(9): 114-124. doi:10.3787/j.issn.1000-0976.2021.09.012 [9] WANG Jingpeng, LI Yuan, GE Xiaobo, et al. Drilling plan optimization of ultra-deep wells of Well Hutan-1 in the thrust belt of the southern margin of Junggar Basin[J]. Xinjiang Oil and Gas, 2020, 16(2): 19-23. doi: 10.3969/j.issn.1673-2677.2020.02.005 王敬朋, 李渊, 葛晓波, 等. 准噶尔盆地南缘冲断带—呼探1井超深井钻井方案优化[J]. 新疆石油天然气, 2020, 16(2): 19-23. doi:10.3969/j.issn.1673-2677.2020.02.005 [10] HE Tao, LI Maosen, YANG Lanping, et al. Application of oil-based drilling fluid in shale gas horizontal well in district of Weiyuan[J]. Drilling Fluid & Completion Fluid, 2012, 29(3): 1-5. doi: 10.3969/j.issn.1001-5620.2012.03.001 [11] WANG Zhonghua. Research and application progress of oil-based drilling fluids at home and abroad[J]. Fault Block Oil and Gas Field, 2011, 18(4): 533-537. 王中华. 国内外油基钻井液研究与应用进展[J]. 断块油气田, 2011, 18(4): 533-537. [12] IBRAHIM M A, SALEH T A. Advances in functionalized Nanoparticles based drilling inhibitors for oil production[J]. Energy Reports, 2019, 5(3): 1293. doi: 10.1016/j.egyr.2019.06.002 [13] ISMAIL A R, JUNIN R, ISMAIL I, et al. The effectiveness of cationic and polymer inhibitors on shale[J]. Advanced Materials Research, 2015, 1125: 205-209. doi: 10.4028/www.scientific.net/AMR.1125.205 [14] LIANG Wenli. Influencing factors analysis and technical countermeasures of instability of the wellbore in fractured formations in Fuling[J]. Natural Gas Exploration and Development, 2018, 41(2): 70-73, 82. doi:10.12055/gaskk.issn.1673-3177.2018.02.010 梁文利. 涪陵破碎性地层井壁失稳影响因素分析及技术对策[J]. 天然气勘探与开发, 2018, 41(2): 70-73, 82. doi:10.12055/gaskk.issn.1673-3177.2018.02.010 [15] LIU Zheng, LI Juncai, JIANG Xueguang. Application of strong plugging high-density oil-based drilling fluid in Gaotan 1 Well in Xinjiang Oilfield[J]. Petroleum Drilling and Production Technology, 2019, 41(4): 467-474. doi: 10.13639/j.odpt.2019.04.011 刘政, 李俊材, 蒋学光. 强封堵高密度油基钻井液在新疆油田高探1井的应用[J]. 石油钻采工艺, 2019, 41(4): 467-474. doi:10.13639/j.odpt.2019.04.011 [16] ZHEN G F, JING G L, HU W J, et al. The research of the oil base drilling fluid hard brittle shale sidewall instability mechanism[J]. Applied Mechanics and Materials, 2014, 513(5): 309-313. doi: 10.4028/www.scientific.net/AMM.513-517.309 [17] HE Shiming, ZHOU Jun, DENG Xiaogang, et al. Wellbore stability analysis of oil and gas reservoir drilling inside buried hill in Jizhong Depression[J]. Science Technology and Engineering, 2016, 16(19): 185-191. doi: 10.3969/j.issn.1671-1815.2016.19.031 何世明, 周俊, 邓小刚, 等. 冀中坳陷潜山内幕油气藏钻井井壁稳定分析[J]. 科学技术与工程, 2016, 16(19): 185-191. doi:10.3969/j.issn.1671-1815.2016.19.031 [18] ZHANG Qin, WU Shuhua. Analysis method of rock mineral composition[J]. Big Science and Technology, 2014(7): 229-230. 张琴, 吴树华. 岩石矿物质成分的分析方法[J]. 大科技, 2014(7): 229-230. [19] GENG Longxiang, CAO Yushan. Interpretation of technical specifications for shale gas resource/reserve calculation and evaluation[J]. Unconventional Oil and Gas, 2015, 2(1): 10-14. 耿龙祥, 曹玉珊. 页岩气资源/储量计算与评价技术规范解读[J]. 非常规油气, 2015, 2(1): 10-14. [20] XIE Shuixiang, JIANG Guancheng, CHEN Mian, et al. Drilling fluid technology to solve the problem of borehole instability in the Kuchak Area of the Tarim Basin[J]. Natural Gas Industry, 2011, 31(10): 68-72. doi: 10.3787/j.issn.1000-0976.2011.10.016 谢水祥, 蒋官澄, 陈勉, 等. 破解塔里木盆地群库恰克地区井壁失稳难题的钻井液技术[J]. 天然气工业, 2011, 31(10): 68-72. doi:10.3787/j.issn.1000-0976.2011.10.016 [21] KARABORNI S, SMIT B, HEIDUG W, et al. The swelling of clays: Molecular simulations of the hydration of montmorillonite[J]. Science, 1996, 271(5252): 1102- 1104. doi: 10.1126/science.271.5252.1102 [22] XU Weiqiang, SHA Wei, WANG Zhisheng, et al. Research on the instability mechanism of Lenghu No. 5 structure well wall[J]. China Petroleum and Chemical Standards and Quality, 2020, 40(2): 168-171. doi: 10.3969/j.issn.1673-4076.2020.02.083 徐卫强, 沙威, 王志晟, 等. 冷湖五号构造井壁失稳机理研究[J]. 中国石油和化工标准与质量, 2020, 40(2): 168-171. doi:10.3969/j.issn.1673-4076.2020.02.083 [23] WANG Xingyuan, MI Guangyong, WANG Qiang. Analysis of the instability mechanism and countermeasures of the wellbore in the shawan formation-emeishan basalt well section in southwestern Sichuan[J]. Drilling Fluids and Completion Fluids, 2018, 35(6): 55-59. doi: 10.3969/j.issn.1001-5620.2018.06.0010 王星媛, 米光勇, 王强. 川西南部沙湾组—峨眉山玄武岩井段井壁失稳机理分析及应对措施[J]. 钻井液与完井液, 2018, 35(6): 55-59. doi:10.3969/j.issn.1001-5620.2018.06.0010 [24] YU Yangfeng. Multi-scale structure description and instability mechanism of organic-rich shale[D]. Chengdu: Southwest Petroleum University, 2013. 俞杨烽. 富有机质页岩多尺度结构描述及失稳机理[D]. 成都: 西南石油大学, 2013. [25] DU Xuan. Study on the mechanism and countermeasures of wellbore instability of Paleogene strata in Xijiang Block[D]. Beijing: China University of Petroleum (Beijing), 2018. 杜宣. 西江区块古近系地层井壁失稳机理及对策研究[D]. 北京: 中国石油大学(北京), 2018. [26] YAO Rugang, HE Shiming, LONG Ping, et al. Collapse pressure calculation model for fractured formations[J]. Drilling & Production Technology, 2012, 35(1): 21-23. doi: 10.3969/J.ISSN.1006-768X.2012.01.07 姚如钢, 何世明, 龙平, 等. 破碎性地层坍塌压力计算模型[J]. 钻采工艺, 2012, 35(1): 21-23. doi:10.3969/J.ISSN.1006-768X.2012.01.07 [27] LI Jing, KONG Xiangchao, SONG Mingshui, et al. Study on the influence of reservoir rock microscopic pore structure on rock mechanical properties and fracture propagation[J]. Rock and Soil Mechanics, 2019, 40(11): 4149- 4156, 4164. doi: 10.16285/j.rsm.2018.1866 李静, 孔祥超, 宋明水, 等. 储层岩石微观孔隙结构对岩石力学特性及裂缝扩展影响研究[J]. 岩土力学, 2019, 40(11): 4149-4156, 4164. doi:10.16285/j.rsm.2018.1866 [28] BAMFORD W, POTDAR R. Impact on stability of boreholes in brown coal over time and changes to in situ stress[C]. Ninth International Symposium on Field Measurements in Geomechanics, 2015. doi: 10.36487/ACG_rep/1508_51_Bamford [29] LI Xiaobing, LIU Ying. Microstructure surface contact angle model and its wettability[J]. Materials Guide, 2009, 23(24): 101-103. doi: 10.3321/j.issn:1005-023X.2009.24.029 李小兵, 刘莹. 微观结构表面接触角模型及其润湿性[J]. 材料导报, 2009, 23(24): 101-103. doi:10.3321/j.issn:1005-023X.2009.24.029 [30] KETELSON H A, MEADOWS D L, STONE R P. Dynamic wettability properties of a soft contact lens hydrogel[J]. Colloids and surfaces B: Biointerfaces, 2005, 40(1): 1-9. doi: 10.1016/j.colsurfb.2004.07.010 [31] PENG Yangdong, SHI Yanping, CHEN Shuya, et al. Study on the influence of coal rock mineral composition and microstructure on its wettability[J]. Coal Technology, 2018, 37(7): 112-114. doi: 10.13301/j.cnki.ct.2018.07.040 彭扬东, 石彦平, 陈书雅, 等. 煤岩矿物组成与微观结构对其润湿性的影响规律研究[J]. 煤炭技术, 2018, 37(7): 112-114. doi:10.13301/j.cnki.ct.2018.07.040 [32] ZHOU Xue, LIU Xiangjun, LIANG Lixi, et al. Study on the wettability and influencing factors of shale[J]. Chemical Engineering Design Communications, 2020, 46(1): 241-242. doi: 10.3969/j.issn.1003-6490.2020.01.162 周雪, 刘向君, 梁利喜, 等. 页岩润湿性及影响因素研究[J]. 化工设计通讯, 2020, 46(1): 241-242. doi:10.3969/j.issn.1003-6490.2020.01.162 [33] YAN Jienian. Drilling fluid technology[M]. Dongying: China University of Petroleum, 2001. 鄢捷年. 钻井液工艺学[M]. 东营: 石油大学出版社, 2001. [34] HE Yushan. Rock mass structure mechanics[J]. Chinese Sci-Tech Periodical Database (Full Text Edition): Engineering Technology, 2015(14): 155. 何玉珊. 岩体结构力学[J]. 中文科技期刊数据库(全文版) 工程技术, 2015(14): 155. [35] YU Yangfeng, KANG Yili, YOU Lijun, et al. Alkali erosion: A new mechanism of shale borehole wall instability[J]. Acta Petrolei Sinica, 2013, 34(5): 983-988. doi: 10.7623/syxb201305021 俞杨烽, 康毅力, 游利军, 等. 碱液侵蚀: 一种泥页岩井壁失稳新机理[J]. 石油学报, 2013, 34(5): 983-988. doi:10.7623/syxb201305021 [36] WANG Bo, SUN Jinsheng, SHEN Feng, et al. Instability mechanism and water-based drilling fluid countermeasures of horizontal well section of continental shale gas[J]. Natural Gas Industry, 2020, 40(4): 104-111. doi:10.3787/j.issn.1000-0976.2020.04.013j.issn.1000-0976.2020.04.013 王波, 孙金声, 申峰, 等. 陆相页岩气水平井段井壁失稳机理及水基钻井液对策[J]. 天然气工业, 2020, 40(4): 104-111. doi:10.3787/j.issn.1000-0976.2020.04.013 [37] WANG Jianhua, LI Jiannan, YAN Lili, et al. Development of nano-polymer plugging agent for oil-based drilling fluids[J]. Drilling Fluids and Completion Fluids, 2013, 30(6): 5-8. doi: 10.3969/j.issn.1001-5620.2013.06.002 王建华, 李建男, 闫丽丽, 等. 油基钻井液用纳米聚合物封堵剂的研制[J]. 钻井液与完井液, 2013, 30(6): 5-8. doi:10.3969/j.issn.1001-5620.2013.06.002 [38] HAN Cheng, HUANG Kaiwen, LUO Ming, et al. High-temperature and high-pressure well plugging technology in Yingqiong Basin, South China Sea[J]. Petroleum Drilling Technology, 2019, 47(6): 15-20. doi: 10.11911/syztjs.2019081 韩成, 黄凯文, 罗鸣, 等. 南海莺琼盆地高温高压井堵漏技术[J]. 石油钻探技术, 2019, 47(6): 15-20. doi:10.11911/syztjs.2019081 [39] AI Guicheng. Discussion on the rheology and filter loss of silicate drilling fluid[J]. Fault Block Oil and Gas Field, 2008, 15(4): 109-111. 艾贵成. 硅酸盐钻井液流变性与滤失造壁性探讨[J]. 断块油气田, 2008, 15(4): 109-111. [40] HERMOSO J, MARTINEZ-BOZA F J, GALLEGOS F. Combined effect of pressure and temperature on the viscous behaviour of all-oil drilling fluids[J]. Oil & Gas Science & Technology, 2014, 69(7): 1283-1296. doi:10.2516/ogst/2014003 [41] WANG Xianguang, GAO Shuyang, CHU Qi, et al. Evaluation of Longmaxi Formation shale borehole stability performance under different fluid media conditions[J]. Journal of Yangtze University (Natural Science Edition), 2020, 17(2): 45-52. doi: 10.3969/j.issn.1673-1409.2020.02.009 王显光, 高书阳, 褚奇, 等. 不同流体介质条件下龙马溪组页岩井壁稳定性能评价[J]. 长江大学学报(自然科学版), 2020, 17(2): 45-52. doi:10.3969/j.issn.1673-1409.2020.02.009 |