[1] ZOU Caineng, YANG Zhi, ZHU Rukai, et al. Progress in China's unconventional oil & gas exploration and development and theoretical technologies[J]. Acta Geologica Sinica, 2015, 89(6): 979-1007. doi: 10.3969/j.issn.0001-5717.2015.06.001 邹才能, 杨智, 朱如凯, 等. 中国非常规油气勘探开发与理论技术进展[J]. 地质学报, 2015, 89(6): 979-1007. doi: 10.3969/j.issn.0001-5717.2015.06.001 [2] DONG Dazhong, ZOU Caineng, YANG Hua, et al. Progress and prospects of shale gas exploration and development in China[J]. Acta Petrolei Sinica, 2012, 33(S1): 107-114. doi: 10.7623/syxb2012S1013 董大忠, 邹才能, 杨桦, 等. 中国页岩气勘探开发进展与发展前景[J]. 石油学报, 2012, 33(S1): 107-114. doi: 10.7623/syxb2012S1013 [3] ZOU Caineng, PAN Songqi, JING Zhenhua, et al. Shale oil and gas revolution and its impact[J]. Acta Petrolei Sinica, 2020, 41(1): 1-12. doi: 10.7623/syxb202001001 邹才能, 潘松圻, 荆振华, 等. 页岩油气革命及影响[J]. 石油学报, 2020, 41(1): 1-12. doi: 10.7623/syxb202001001 [4] HE Zhiliang, NIE Haikuan, JIANG Tingxue. Challenges and countermeasures of effective development with large scale of deep shale gas in Sichuan Basin[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(2): 1-11. doi: 10.13809/j.cnki.cn32-1825/te.2021.02.001 何治亮, 聂海宽, 蒋廷学. 四川盆地深层页岩气规模有效开发面临的挑战与对策[J]. 油气藏评价与开发, 2021, 11(2): 1-11. doi: 10.13809/j.cnki.cn32-1825/te.2021.02.001 [5] GUO Tonglou. Progress and research direction of deep shale gas exploration and development[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(1): 1-6. doi: 10.13809/j.cnki.cn32-1825/te.2021.01.001 郭彤楼. 深层页岩气勘探开发进展与攻关方向[J]. 油气藏评价与开发, 2021, 11(1): 1-6. doi: 10.13809/j.cnki.cn32-1825/te.2021.01.001 [6] DONG Dazhong, GAO Shikui, HUANG Jinliang, et al. A discussion on the shale gas exploration & development prospect in the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(12): 1-15. doi: 10.3787/j.issn.1000-0976.2014.12.001 董大忠, 高世葵, 黄金亮, 等. 论四川盆地页岩气资源勘探开发前景[J]. 天然气工业, 2014, 34(12): 1-15. doi: 10.3787/j.issn.1000-0976.2014.12.001 [7] ZHANG Surong, DONG Dazhong, LIAO Qunshan, et al. Geological characteristics and resource prospect of deep marine shale gas in the southern Sichuan Basin[J]. Natural Gas Industry, 2021, 41(9): 35-45. doi: 10.3787/j.issn.1000-0976.2021.09.004 张素荣, 董大忠, 廖群山, 等. 四川盆地南部深层海相页岩气地质特征及资源前景[J]. 天然气工业, 2021, 41(9): 35-45. doi: 10.3787/j.issn.1000-0976.2021.09.004 [8] CONG Ping, YAN Jianping, JING Cui, et al. Logging evaluation and distribution characteristics of fracturing grade in shale gas reservoir: A case study from Wufeng Formation and Longmaxi Formation in X Area, southern Sichuan Basin[J]. Lithologic Reservoirs, 2021, 33(3): 177-188. doi: 10.12108/yxyqc.20210319 丛平, 闫建平, 井翠, 等. 页岩气储层可压裂性级别测井评价及展布特征——以川南X地区五峰组—龙马溪组为例[J]. 岩性油气藏, 2021, 33(3): 177-188. doi: 10.12108/yxyqc.20210319 [9] DONG Min, GUO Wei, ZHANG Linyan, et al. Characteristics of paleotectonic stress field and fractures of Wufeng-Longmaxi Formation in Luzhou Area, southern Sichuan Basin[J]. Lithologic Reservoirs, 2022, 34(1): 43- 51. doi: 10.12108/yxyqc.20220105 董敏, 郭伟, 张林炎, 等. 川南泸州地区五峰组—龙马溪组古构造应力场及裂缝特征[J]. 岩性油气藏, 2022, 34(1): 43-51. doi: 10.12108/yxyqc.20220105 [10] QIU Chen, YAN Jianping, ZHONG Guanghai, et al. Sedimentary microfacies division and logging identification of Ordovician Wufeng-Silurian Longmaxi shale in Luzhou Area, Sichuan Basin[J]. Lithologic Reservoirs, 2022, 34(3): 117-130. doi: 10.12108/yxyqc.20220311 邱晨, 闫建平, 钟光海, 等. 四川盆地泸州地区奥陶系五峰组—志留系龙马溪组页岩沉积微相划分及测井识别[J]. 岩性油气藏, 2022, 34(3): 117-130. doi: 10.12108/yxyqc.20220311 [11] YANG Xiaobing, ZHANG Shudong, ZHANG Zhigang, et al. Logging interpretation and evaluation of low resistivity shale gas reservoirs[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2015, 42(6): 692-699. doi: 10.3969/j.issn.1671-9727.2015.06.07 杨小兵, 张树东, 张志刚, 等. 低阻页岩气储层的测井解释评价[J]. 成都理工大学学报(自然科学版), 2015, 42(6): 692-699. doi: 10.3969/j.issn.1671-9727.2015.06.07 [12] GAO Hequn, DING Anxu, CAI Xiao, et al. Genetic analysis of abnormal resistivity of Middle-Upper Yangtze marine shales[J]. Fault-Block Oil & Gas Field, 2016, 23(5): 578-582. doi: 10.6056/dkyqt201605007 高和群, 丁安徐, 蔡潇, 等. 中上扬子海相页岩电阻率异常成因分析[J]. 断块油气田, 2016, 23(5): 578-582. doi: 10.6056/dkyqt201605007 [13] XIE Xiaoguo, LUO Bing, YIN Liangxian, et al. Influence factors of low resistivity shale gas reservoir[J]. Acta Geologica Sichuan, 2017, 37(3): 433-437. doi: 10.3969/j.issn.1006-0995.2017.03.018 谢小国, 罗兵, 尹亮先, 等. 低阻页岩气储层影响因素分析[J]. 四川地质学报, 2017, 37(3): 433-437. doi: 10.3969/j.issn.1006-0995.2017.03.018 [14] SUN Jianmeng, XIONG Zhu, LUO Hong, et al. Mechanism analysis and logging evaluation of low resistivity in Lower Paleozoic shale gas reservoirs of Yangtze Region[J]. Journal of China University of Petroleum (Edition of Natural Science), 2018, 42(5): 47-56. doi: 10.3969/j.issn.1673-5005.2018.05.005 孙建孟, 熊铸, 罗红, 等. 扬子地区下古生界页岩气储层低阻成因分析及测井评价[J]. 中国石油大学学报(自然科学版), 2018, 42(5): 47-56. doi: 10.3969/j.issn.1673-5005.2018.05.005 [15] CUI Ruikang, SUN Jianmeng, LIU Xingjun, et al. Major controlling factors of low-resistance shale gas reservoirs[J]. Geophysical and Geochemical Exploration, 2022, 46(1): 150-159. doi: 10.11720/wtyht.2022.1123 崔瑞康, 孙建孟, 刘行军, 等. 低阻页岩电阻率主控因素研究[J]. 物探与化探, 2022, 46(1): 150-159. doi: 10.11720/wtyht.2022.1123 [16] WANG Yuman, LI Xinjing, CHEN Bo, et al. Lower limit of thermal maturity for the carbonization of organic matter in marine shale and its exploration risk[J]. Petroleum Exploration and Development, 2018, 45(3): 385-395. doi: 10.11698/PED.2018.03.03 王玉满, 李新景, 陈波, 等. 海相页岩有机质炭化的热成熟度下限及勘探风险[J]. 石油勘探与开发, 2018, 45(3): 385-395. doi: 10.11698/PED.2018.03.03 [17] ZHAO Wentao, JING Tieya, XIONG Xin, et al. Graphitization characteristics of organic matters in marine-facies shales[J]. Bulletin of Geological Science and Technology, 2018, 37(2): 183-191. doi: 10.19509/j.cnki.dzkq.2018.0225 赵文韬, 荆铁亚, 熊鑫, 等. 海相页岩有机质石墨化特征研究——以渝东南地区牛蹄塘组为例[J]. 地质科技情报, 2018, 37(2): 183-191. doi: 10.19509/j.cnki.dzkq.2018.0225 [18] HOU Yuguang, ZHANG Kunpeng, HE Sheng, et al. Origin and geological significance of ultra low resistivity in Lower Paleozoic marine shale, South China[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 80-89. doi: 10.19509/j.cnki.dzkq.2021.0104 侯宇光, 张坤朋, 何生, 等. 南方下古生界海相页岩极低电阻率成因及其地质意义[J]. 地质科技通报, 2021, 40(1): 80-89. doi: 10.19509/j.cnki.dzkq.2021.0104 [19] WANG Ying, HE Jia, KOU Yilong, et al. Causes of low resistivity of Longmaxi Formation shale reservoirs in Changning Area[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(3): 53-61. doi: 10.13673/j.cnki.cn37-1359/te.202104014 王滢, 何嘉, 寇一龙, 等. 长宁地区龙马溪组页岩储层低电阻率成因[J]. 油气地质与采收率, 2022, 29(3): 53-61. doi: 10.13673/j.cnki.cn37-1359/te.202104014 [20] MA Xinhua, XIE Jun, YONG Rui, et al. Geological characteristics and high production control factors of shale gas reservoirs in Silurian Longmaxi Formation, southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(5): 841-855. doi: 10.11698/PED.2020.05.01 马新华, 谢军, 雍锐, 等. 四川盆地南部龙马溪组页岩气储集层地质特征及高产控制因素[J]. 石油勘探与开发, 2020, 47(5): 841-855. doi: 10.11698/PED.2020.05.01 [21] JIAO Fangzheng, YANG Yu, RAN Qi, et al. Distribution and gas exploration of the strike-slip faults in the central Sichuan Basin[J]. Natural Gas Industry B, 2022, 9(1): 63-72. doi: 10.1016/j.ngib.2021.08.018 [22] LIU Shugen, DENG Bin, ZHONG Yong, et al. Unique geological features of burial and superimposition of the Lower Paleozoic shale gas across the Sichuan Basin and its periphery[J]. Earth Science Frontiers, 2016, 23(1): 11-28. doi: 10.13745/j.esf.2016.01.002 刘树根, 邓宾, 钟勇, 等. 四川盆地及周缘下古生界页岩气深埋藏-强改造独特地质作用[J]. 地学前缘, 2016, 23(1): 11-28. doi: 10.13745/j.esf.2016.01.002 [23] LI Zhengtao, ZHANG Zhen, WU Pengcheng, et al. Mechanical mechanisms of wellbore instability of deep anisotropic shale in southern Sichuan[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2021, 43(4): 11-25. doi: 10.11885/j.issn.1674-5086.2021.04.28.05 李郑涛, 张震, 吴鹏程, 等. 川南深层各向异性页岩井壁失稳力学机理[J]. 西南石油大学学报(自然科学版), 2021, 43(4): 11-25. doi: 10.11885/j.issn.1674-5086.2021.04.28.05 [24] YANG Hongzhi, ZHAO Shengxian, LIU Yong, et al. Main controlling factors of enrichment and high-yield of deep shale gas in the Luzhou Block, southern Sichuan Basin[J]. Natural Gas Industry, 2019, 39(11): 55-63. doi: 10.3787/j.issn.1000-0976.2019.11.007 杨洪志, 赵圣贤, 刘勇, 等. 泸州区块深层页岩气富集高产主控因素例[J]. 天然气工业, 2019, 39(11): 55-63. doi: 10.3787/j.issn.1000-0976.2019.11.007 [25] ZHAO Shengxian, LIU Yong, FENG Jiangrong, et al. Brittleness characteristics of organic-rich shale and its relationship with fracture development of Longmaxi Formation in Changning Area[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2022, 44(4): 1-13. doi: 10.11885/j.issn.1674-5086.2020.07.20.01 赵圣贤, 刘勇, 冯江荣, 等. 长宁地区富有机质页岩脆性及与裂缝发育关系[J]. 西南石油大学学报(自然科学版), 2022, 44(4): 1-13. doi: 10.11885/j.issn.1674-5086.2020.07.20.01 [26] NIE Zhou, HENG De, ZOU Yuanhong, et al. The research of characteristic of Xujiahe Formation reservoir in Dayi Structure of the western Sichuan Depression[J]. Marine Origin Petroleum Geology, 2021, 26(1): 43-50. doi: 10.3969/j.issn.1672-9854.2021.01.005 聂舟, 衡德, 邹源红, 等. 四川盆地长宁地区海相页岩吸附气含量演化特征——以N201井五峰组—龙马溪组一段为例[J]. 海相油气地质, 2021, 26(1): 43-50. doi: 10.3969/j.issn.1672-9854.2021.01.005 [27] HE Xiao, WU Jianfa, YONG Rui, et al. Accumulation conditions and key exploration and development technologies of marine shale gas field in Changning-Weiyuan Block, Sichuan Basin[J]. Acta Petrolei Sinica, 2021, 42(2): 259-272. doi: 10.7623/syxb202102010 何骁, 吴建发, 雍锐, 等. 四川盆地长宁—威远区块海相页岩气田成藏条件及勘探开发关键技术[J]. 石油学报, 2021, 42(2): 259-272. doi: 10.7623/syxb202102010 [28] ZHOU Zheng. Enrichment laws of shale-gas in the Wufeng-Longmaxi Formation, Changning Area, southern Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2020. 周政. 长宁地区五峰组—龙马溪组页岩气富集特征研究[D]. 成都: 成都理工大学, 2020. [29] ZOU Xiaoyan, LI Xianqing, WANG Yuan, et al. Reservoir characteristics and gas content of Wufeng-Longmaxi Formations deep shale in southern Sichuan Basin[J]. Natural Gas Geoscience, 2022, 33(4): 654-665. doi: 10.11764/j.issn.1672-1926.2021.10.004 邹晓艳, 李贤庆, 王元, 等. 川南地区五峰组-龙马溪组深层页岩储层特征和含气性[J]. 天然气地球科学, 2022, 33(4): 654-665. doi: 10.11764/j.issn.1672-1926.2021.10.004 [30] YAN Jianping, CAI Jingong, ZHAO Minghai, et al. Study on integration of multiple logging curves and its application in geological stratification[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2008, 23(6): 6-10. doi: 10.3969/j.issn.1673-064X.2008.06.002 闫建平, 蔡进功, 赵铭海, 等. 测井曲线融合方法研究及其在分层中的应用[J]. 西安石油大学学报(自然科学版), 2008, 23(6): 6-10. doi: 10.3969/j.issn.1673-064X.2008.06.002 [31] YAN Jianping, CAI Jingong, ZHAO Minghai, et al. Advances in the study of source rock evaluation by geophysical logging and its significance in resource assessment[J]. Progress in Geophysics, 2009, 24(1): 270-279. 闫建平, 蔡进功, 赵铭海, 等. 运用测井信息研究烃源岩进展及其资源评价意义[J]. 地球物理学进展, 2009, 24(1): 270-279. [32] ZHANG Haijie, JIANG Yuqiang, ZHOU Keming, et al. Connectivity of pores in shale reservoirs and its implications for the development of shale gas: A case study of the Lower Silurian Longmaxi Formation in the southern Sichuan Basin[J]. Natural Gas Industry, 2019, 39(12): 22-31. doi: 10.3787/j.issn.1000-0976.2019.12.003 张海杰, 蒋裕强, 周克明, 等. 页岩气储层孔隙连通性及其对页岩气开发的启示——以四川盆地南部下志留统龙马溪组为例[J]. 天然气工业, 2019, 39(12): 22-31. doi: 10.3787/j.issn.1000-0976.2019.12.003 [33] YAN Lei, ZHOU Wen, FAN Jingyu, et al. Log evaluation method for gas content of deep shale gas reservoirs in southern Sichuan Basin[J]. Well Logging Technology, 2019, 43(2): 149-154. doi: 10.16489/j.issn.1004-1338.2019.02.008 颜磊, 周文, 樊靖宇, 等. 川南深层页岩气储层含气量测井计算方法[J]. 测井技术, 2019, 43(2): 149-154. doi: 10.16489/j.issn.1004-1338.2019.02.008 [34] CHEN Shangbin, ZUO Zhaoxi, ZHU Yanming, et al. Applicability of the testing method for the maturity of organic matter in shale gas reservoirs[J]. Natural Gas Geoscience, 2015, 26(3): 564-574. doi: 10.11764/j.issn.1672-1926.2015.03.0564 陈尚斌, 左兆喜, 朱炎铭, 等. 页岩气储层有机质成熟度测试方法适用性研究[J]. 天然气地球科学, 2015, 26(3): 564-574. doi: 10.11764/j.issn.1672-1926.2015.03.0564 [35] WANG Yuman, LI Xinjing, WANG Hao, et al. Prediction of organic matter carbonization zones for Lower Silurian Longmaxi Formation in Middle-upper Yangtze Region[J]. Natural Gas Geoscience, 2020, 31(2): 151-162. doi: 10.11764/j.issn.1672-1926.2019.12.009 王玉满, 李新景, 王皓, 等. 中上扬子地区下志留统龙马溪组有机质碳化区预测[J]. 天然气地球科学, 2020, 31(2): 151-162. doi: 10.11764/j.issn.1672-1926.2019.12.009 [36] JIANG Shan, WANG Yuman, WANG Shuyan, et al. Distribution prediction of graphitized organic matter areas in the Lower Cambrian Qiongzhusi shale in the central Sichuan paleo-uplift and its surrounding areas in the Sichuan Basin[J]. Natural Gas Industry, 2018, 38(10): 19-27. doi: 10.3787/j.issn.1000-0976.2018.10.003 蒋珊, 王玉满, 王书彦, 等. 四川盆地川中古隆起及周缘下寒武统筇竹寺组页岩有机质石墨化区预测[J]. 天然气工业, 2018, 38(10): 19-27. doi: 10.3787/j.issn.1000-0976.2018.10.003 [37] GUO Yingxing, ZHU Tao, ZHENG Jun. Numerical simulation of electrical conductivity on the graphite-quartz model and its geophysical application[J]. Chinese Journal of Geophysics, 2021, 64(11): 4031-4042. doi: 10.6038/cjg2021O0487 郭颖星, 朱涛, 郑军. 石墨-石英模型电导率的数值模拟研究及地球物理应用[J]. 地球物理学报, 2021, 64(11): 4031-4042. doi: 10.6038/cjg2021O0487 |