西南石油大学学报(自然科学版) ›› 2025, Vol. 47 ›› Issue (3): 76-87.DOI: 10.11885/j.issn.1674-5086.2023.05.24.01

• 地质勘探 • 上一篇    下一篇

塔西南山前带的地震波场正演模拟分析

裴广平1, 沈天晶2, 彭更新1, 姜泽磊2, 陈飞旭1   

  1. 1. 中国石油塔里木油田分公司勘探开发研究院, 新疆 库尔勒 841000;
    2. 西南石油大学地球科学与技术学院, 四川 成都 610500
  • 收稿日期:2023-05-24 发布日期:2025-07-11
  • 通讯作者: 裴广平,E-mail: peigp-tlm@petrochina.com.cn
  • 作者简介:裴广平,1985年生,男,满族,辽宁抚顺人,工程师,硕士,主要从事地震资料采集、解释等方面的研究工作。E-mail:peigptlm@petrochina.com.cn
    沈天晶,1996年生,男,汉族,重庆合川人,博士,主要从事地震资料处理、解释方面的研究。E-mail:tianjing.shen@qq.com
    彭更新,1966年生,男,汉族,陕西渭南人,高级工程师,硕士,主要从事地震资料处理、解释方面的研究工作。E-mail:penggxtlm@petrochina.com.cn
    姜泽磊,1996年生,男,汉族,四川成都人,博士,主要从事地震资料采集、建模方面的研究。E-mail:xiaolei217217@163.com
    陈飞旭,1988年生,男,汉族,陕西榆林人,高级工程师,硕士,主要从事地震资料处理、采集方面的研究工作。E-mail:chenfxtlm@petrochina.com.cn

Seismic Wavefield Forward Modeling Study Under Complex Conditions in the Southwest Foreland Belt of the Tarim Basin

PEI Guangping1, SHEN Tianjing2, PENG Gengxin1, JIANG Zelei2, CHEN Feixu1   

  1. 1. Research Institute of Exploration and Development, PetroChina Tarim Oilfield Branch Company, Korla, Xinjiang 841000, China;
    2. School of Geoscience and Technology, Southwest Petroleum University, Chengdu, Sichuan 610500, China
  • Received:2023-05-24 Published:2025-07-11

摘要: 塔里木盆地西南山前带地区的地表、地下构造模式复杂,构造岩性多变,属典型的“地表地下双复杂”区域,地震波场复杂,处理与成像难度大,精度低。为厘清该地区的地震波场传播规律,为后续资料处理提供理论基础,以实际地震资料、测井数据以及近地表露头数据为基础,建立了代表该地区地质特征的双复杂速度模型,并进行地震波场模拟分析。首先,利用近地表层析数据与高程建立了近地表速度模型,再以地震解释数据为基础,对复杂构造模型进行模式化调整,最后,将近地表速度模型与构造模型进行融合完成速度结构建模。为更好地建立符合目标工区实际Q值分布,总结了一套基于稀疏井数据的Q模型建立方法。通过对上述方法建立的速度模型与Q模型进行地震波场正演模拟,分析了地表高程起伏、近地表速度分布等因素对地下地震波场的影响。上述研究可为研究区的地震采集观测系统参数优化、提高地震成像质量建立理论基础。

关键词: 三维地质建模, 起伏地表, 数值模拟, 数值频散, 黏声波正演

Abstract: The surface and subsurface structural patterns in the region in front of the southwest foothill area of the Tarim Basin are highly complex, with diverse lithological and structural features. This area is a typical case of “dual complexity” in both surface and subsurface geology, leading to complex seismic wavefields and significant challenges in data processing and imaging accuracy. To clarify the seismic wavefield propagation characteristics in this region and provide a theoretical basis for subsequent data processing, this study constructs a dual-complexity velocity model representative of the area's geological features, based on field seismic data, well logging data, and near-surface outcrop information, and conducts seismic wavefield simulation analysis. During the modeling process, a near-surface velocity model was first developed using near-surface tomography data and elevation information. Then, a structurally complex model was constructed and refined based on seismic interpretation results. These models were subsequently integrated to form the final velocity structure model. To accurately characterize the Q value distribution within the target area, this study proposes a method for constructing a Q model based on sparse well data. Seismic wavefield forward modeling was conducted using the developed velocity and Q models to analyze the effects of surface elevation variation and near-surface velocity distribution on the subsurface wavefield. The findings are expected to provide a theoretical basis for optimizing seismic acquisition system parameters and improving seismic imaging quality in the study area.

Key words: 3D geological modeling, rolling surface, numerical simulation, numerical dispersion, visco-acoustic wave modeling

中图分类号: