西南石油大学学报(自然科学版) ›› 2025, Vol. 47 ›› Issue (5): 39-48.DOI: 10.11885/j.issn.1674-5086.2024.06.12.01

• 地质勘探 • 上一篇    下一篇

基于XGBoost算法的砂砾岩储层测井岩性识别

王英伟1, 赵军2, 覃建华3, 张景4, 汪峻宇2, 冯月丽1   

  1. 1. 中国石油新疆油田公司勘探开发研究院, 新疆 克拉玛依 834000;
    2. 西南石油大学地球科学与技术学院, 四川 成都 610500;
    3. 怀柔实验室新疆研究院, 新疆 乌鲁木齐 830000;
    4. 中国石油新疆油田公司玛湖勘探开发项目部, 新疆 克拉玛依 834000
  • 收稿日期:2024-06-12 发布日期:2025-11-04
  • 通讯作者: 王英伟,E-mail:xjwyw@petrochina.com.cn
  • 作者简介:王英伟,1985年生,男,汉族,河南南阳人,高级工程师,主要从事非常规油藏开发地质研究工作。E-mail: xjwyw@petrochina.com.cn
    赵军,1970年生,汉族,四川盐亭人,教授,博士,主要从事岩石物理理论及测井地质解释与评价研究工作。E-mail: zhaojun_70@126.com
    覃建华,1970年生,男,汉族,四川宣汉人,教授级高级工程师,主要从事非常规油藏开发地质等方面的研究工作。E-mail: qjianhua@petrochina.com.cn
    张景,1985年生,男,汉族,湖北罗田人,高级工程师,主要从事非常规油藏开发研究工作。E-mail:zhangjin_xj@petrochina.com.cn
    汪峻宇,1999年生,男,汉族,四川广元人,硕士,主要从事测井地质解释与评价研究工作。E-mail:x18781208315@gmail.com
    冯月丽,1984年生,女,汉族,山东菏泽人,高级工程师,主要从事非常规油藏压裂缝扩展数值模拟和油藏数值模拟工作。E-mail: fcgfyl2022@petrochina.com.cn

Lithology Identification in Glutenite Reservoir Based on the XGBoost Algorithm

WANG Yingwei1, ZHAO Jun2, QIN Jianhua3, ZHANG Jing4, WANG Junyu2, FENG Yueli1   

  1. 1. Exploration and Development Research Institute, Xinjiang Oilfield Company, PetroChina, Karamay, Xinjiang 834000, China;
    2. School of Geoscience and Technology, Southwest Petroleum University, Chengdu, Sichuan 610500, China;
    3. Xinjiang Research Institute of Huairou Laboratory, Urumqi, Xinjiang 830000, China;
    4. Mahu Exploration and Development Project Department, Xinjiang Oilfield Company, PetroChina, Karamay, Xinjiang 834000, China
  • Received:2024-06-12 Published:2025-11-04

摘要: 在砂砾岩储层的岩性识别中,岩石粒度的影响使测井曲线响应复杂,呈现低维线性不可分、高维可分的特点,传统的低维建模方法难以有效应对高维数据建模需求。随着人工智能技术的发展,基于测井数据和计算机算法的岩性识别方法逐渐成为研究趋势。应用优化版的梯度提升决策树算法XGBoost以提升M区块砂砾岩储层的岩性识别精度。虽然XGBoost已在岩性识别中广泛应用,但不同区块的岩性差异使其参数需进行区域适配优化。以百口泉组储层为研究对象,分析其岩性特征及测井响应特征,并选择GR、AC、DEN和RT测井曲线作为特征变量。对468组样本按4: 1的比例划分训练集和测试集,并通过交叉验证优化XGBoost的关键参数,确定了最佳的迭代次数和学习率等参数。实验结果显示,XGBoost算法在本区块的岩性识别准确率达91.05%,相较于C4.5决策树算法,在识别精度和效率上均有显著提升。研究结果验证了XGBoost在砂砾岩储层岩性识别中的适用性和有效性,为类似储层的勘探开发提供了技术参考。

关键词: XGBoost算法, 砂砾岩储层, 岩性识别, 测井评价, 百口泉组储层, 玛湖凹陷

Abstract: In glutenite reservoirs, the complexity of logging responses due to rock granularity poses challenges for traditional lithology identification methods. With technological advancements, combining logging data with computer technology for lithology research has become a new trend. The optimized version of the gradient boosting decision tree, the XGBoost algorithm, is widely applied in lithology identification for its efficient and accurate prediction capabilities and excellent generalization performance. This study uses the XGBoost algorithm to identify the lithology of glutenite reservoirs in the M block to improve identification accuracy. By analyzing the lithological characteristics and logging responses of the Baikouquan formation reservoirs, four logging curves (GR, AC, DEN, RT) were selected as feature variables. A total of 468 sample data sets were divided into training and testing sets in 4: 1 ratio, and the key parameters of XGBoost were optimized through cross-validation, determining the optimal values for iteration times, learning rate, and other model parameters. The experimental results show that the XGBoost algorithm performs well in lithology identification, achieving a final accuracy rate of 91.05%, an improvement in both accuracy and efficiency compared to the C4.5 decision tree algorithm. The study results demonstrate the effectiveness of the XGBoost algorithm in improving lithology identification accuracy, providing guidance for the exploration and development of glutenite reservoirs.

Key words: XGBoost algorithm, glutenite reservoir, lithology identification, logging evaluation, Baikouquan Formation Reservoir, Mahu Depression

中图分类号: