西南石油大学学报(自然科学版)

• 地质勘探 • 上一篇    下一篇

基于敏感地震属性波形分类的流体预测研究

赵忠泉1 *,贺振华2,万晓明1,帅庆伟1   

  1. 1. 国土资源部海底矿产资源重点实验室· 广州海洋地质调查局,广东广州510760
    2.“油气藏地质及开发工程”国家重点实验室· 成都理工大学,四川成都610059
  • 出版日期:2016-06-01 发布日期:2016-06-01
  • 通讯作者: 赵忠泉,E-mail:zzqhello@163.com
  • 基金资助:

    国家自然科学基金(40774064)。

A Study on Fluid Prediction Based on the Classification of Sensitive#br# Seismic Attributes

ZHAO Zhongquan1*, HE Zhenhua2, WAN Xiaoming1, SHUAI Qingwei1   

  1. 1. MLR Key Laboratory of Marine Mineral Resources,Guangzhou Marine Geological Survey,Guang zhou,Guangdong 510760,China
    2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploration,Chengdu University of Technology,Chengdu,Sichuan 610059,China
  • Online:2016-06-01 Published:2016-06-01

摘要:

系统对比了针对储层流体的现有各种识别因子识别含气和含水砂岩的能力,结果显示,高灵敏度识别因子
有较强的综合识别能力。以S 盆地L 研究区为例,在主要含气不等厚层段内对高灵敏度流体因子在神经网络模式和
PCA 神经网络模式两种情况下基于形态学进行分类,效果对比明显,结合井解释资料对研究区进行了初步的流体预
测。将波形分类法的应用范围从主要是进行地震相—沉积相分析、储层预测等扩展到对流体因子在目标层段进行分析
处理从而进行层段内流体预测,对仅在剖面和切片上利用流体因子来进行流体识别和预测是一种新的有价值的补充。
首次探讨了将波形分类技术应用于流体预测,认为该方法与其他解释成果结合对于有效降低勘探风险、提高钻井成功
率具有一定的指导意义。

关键词: 地震属性, 波形分类, 主成份分析, 流体因子, 流体预测

Abstract:

The ability to identify gas-bearing and water-bearing sands of nine fluid identification factors has been compared,
and the results show that the High-Sensitivity-Fluid-Identification-Factor has a strong ability to identify. The neural network
and the Principal-Component-Analysis-neural-network are applied to high-quality 3-D data of HSFIF to perform the waveform
analysis during the gas bearing interval in study area L of basin-S and good mapping effect has been achieved. The facies
maps were analyzed and compared with the logging′interpretation. It proves the application of the PCA-neural network method
can greatly reduce the difficulty of seismic facies interpretation of the map. In this paper,the application range of waveform
classification is extended from seismic-sedimentary-facies analysis and reservoir prediction to the analysis and processing of
the fluid factors in the target layers,thereby we can predict the fluid in layers. It is a new kind of valuable complement to fluid
identification and prediction by using fluid factor only in profile and slice. It is the first time that the waveform classification
techniques has been applied to fluid prediction. We believe that the method along with the results of other explanations has a
guiding significance to reduce exploration risk and enhance drilling success rate.

Key words: seismic attribute, waveform classification, PCA, fluid factor, fluid prediction

中图分类号: