西南石油大学学报(自然科学版) ›› 2020, Vol. 42 ›› Issue (6): 63-74.DOI: 10.11885/j.issn.1674-5086.2020.05.11.02

• 油气田人工智能技术与应用专刊 • 上一篇    下一篇

用深度学习挖掘油田开发指标预测模型的知识

钟仪华1,2, 王淑宁1, 罗兰1, 杨金莲1, 岳永鹏3   

  1. 1. 西南石油大学理学院, 四川 成都 610500;
    2. 西南石油大学人工智能研究院, 四川 成都 610500;
    3. 北京知道创宇信息技术有限公司成都分公司, 四川 成都 610000
  • 收稿日期:2020-05-11 发布日期:2020-12-21
  • 通讯作者: 钟仪华,E-mail:zhongyh_65@126.com
  • 作者简介:钟仪华,1965年生,女,汉族,四川简阳人,教授,博士,主要从事最优化理论与方法、预测与决策、石油工程计算技术及数据挖掘等方面的研究工作。E-mail:zhongyh_65@126.com;王淑宁,1994年生,女,汉族,陕西榆林人,硕士研究生,主要从事应用数学方面的研究工作。E-mail:393875885@qq.com;罗兰,1995年生,女,汉族,四川资阳人,硕士研究生,主要从事数据挖掘方面的研究工作。E-mail:1978684224@qq.com;杨金莲,1996年生,女,汉族,四川遂宁人,硕士研究生,主要从事知识挖掘方面的研究工作。E-mail:2806234881@qq.com;岳永鹏,1987年生,男,汉族,四川巴中人,高级工程师,硕士,主要从事自然语言处理及知识图谱方面的研究工作。E-mail:yueyongpeng@outlook.com

Knowledge Mining for Oilfield Development Index Prediction Model Using Deep Learning

ZHONG Yihua1,2, WANG Shuning1, LUO Lan1, YANG Jinlian1, YUE Yongpeng3   

  1. 1. School of Science, Southwest Petroleum University, Chengdu, Sichuan 610500, China;
    2. Institute for Artificial Intelligence, Southwest Petroleum University, Chengdu, Sichuan 610500, China;
    3. Chengdu Branch, Beijing KnownSec Information Technology Co. Ltd, Chengdu, Sichuan 610000, China
  • Received:2020-05-11 Published:2020-12-21

摘要: 油田开发指标变化特征被当作油田开发规划、油田开采状况评价、油田开发方案设计与调整及油田开发风险预测预警等决策管理问题的重要依据。针对至今没有很好解决的建立智慧油田的瓶颈问题之一——油田开发指标智能预测系统的选择预测方法和模型的知识挖掘问题,基于油田开发的海量数据,利用深度学习的卷积神经网络和循环神经网络,提取反映油田开发动态特征和知识。在此基础上,结合已建立的油田开发指标预测的模型库及知识库,利用深度学习的实体和关系的联合提取方法,提出通过油田开发输入信息、油田开发动态特征指标、油田开发指标预测的模型库和知识库挖掘选择油田开发指标最佳预测模型的知识方法。概念设计的模拟实例表明,提出的知识挖掘流程可实现只要输入油田开发的相关信息,就能自主获得恰当的油田开发指标预测模型。

关键词: 油田开发指标, 预测模型, 知识挖掘, 深度学习, 实体与关系

Abstract: The changing characteristics of oilfield development index are regarded as the important basis of oilfield development planning, oilfield exploitation evaluation, oilfield development scheme design and adjustment, decision management problems of oilfield development risk prediction and early warning, etc. For one of the unsolved bottleneck problem of building intelligent oilfield, i.e. the problem on knowledge mining of selecting prediction method and model of oilfield development indexes intelligent prediction system, based on the massive data of oilfield development, this paper uses the convolutional neural network and cyclic neural network of deep learning to extract the characteristics and knowledge reflecting the development dynamic of oilfield. On this basis, combining the model base and knowledge base of oilfield development index prediction, a knowledge mining method to select the optimal prediction model of oilfield development index is proposed through the input information and dynamic characteristics index of oilfield development, the model base and the knowledge base of oilfield development index prediction by using the joint extraction method of entity and relationship of deep learning. The simulation example of conceptual design shows that the proposed knowledge mining process may realize autonomous obtaining an appropriate prediction model of oilfield development index as long as inputting relevant information of oilfield development.

Key words: oilfield development index, prediction model, knowledge mining, deep learning, entities and relationship

中图分类号: