西南石油大学学报(自然科学版) ›› 2021, Vol. 43 ›› Issue (6): 169-182.DOI: 10.11885/j.issn.1674-5086.2020.10.23.04
朱振宇1, 王清远1,2, 戴光泽3, 朱一林4
收稿日期:
2020-10-23
发布日期:
2022-01-08
通讯作者:
朱一林,E-mail:zhuyiln@swpu.edu.cn
作者简介:
朱振宇,1983年生,男,汉族,山东聊城人,讲师,博士,主要从事金属材料的疲劳、断裂及力学强化方面的研究。E-mail:mse_zhu@my.swjtu.edu.cn;王清远,1965年生,男,汉族,重庆开县人,教授,博士,主要从事新型材料与结构力学问题、超长寿命疲劳与可靠性方面的研究。E-mail:wangqy@cdu.edu.cn;戴光泽,1963年生,男,回族,重庆渝中人,教授,博士,主要从事材料服役行为及强度评价、新型环境功能碳材料方面的研究。E-mail:daiguangze@swjtu.edu.cn;朱一林,1988年生,男,汉族,山东单县人,副研究员,博士,主要从事材料多场耦合循环变形和疲劳及拉胀超材料设计方面的研究。E-mail:zhuyiln@swpu.edu.cn
基金资助:
ZHU Zhenyu1, WANG Qingyuan1,2, DAI Guangze3, ZHU Yilin4
Received:
2020-10-23
Published:
2022-01-08
摘要: 近20年来,高速铁路得到了日新月异的发展,然而,对于高速铁路的关键性行走部件车轮,由于其服役环境是开放性的,并且伴随不断增加的车速及轴重,给车轮带来更加严峻和复杂的损伤。从轮轨接触问题出发,综述了高速铁路车轮主要损伤行为(磨损、疲劳)的现象及特点。由于轮轨接触面开放性的机械热交换作用而导致的车轮表面及近表面结构的热弹性不稳定性,是造成磨损的根本性原因;然而,与磨损缓慢的损伤过程不同,由材料成分和服役过程中机械载荷引起的应力大小和方向上的反复变化,诱发了疲劳源的萌生与裂纹扩展,且形式多样、破坏性更大。通过运用材料的塑性流变特性对车轮近表面的热弹性和内部织构的分析,归纳、总结了与磨损、疲劳等力学性能劣化相关的车轮材料组织、结构的响应特征,为车轮成型设计与服役安全评估提供了理论支撑。
中图分类号:
朱振宇, 王清远, 戴光泽, 朱一林. 高速铁路车轮的磨损与疲劳研究[J]. 西南石油大学学报(自然科学版), 2021, 43(6): 169-182.
ZHU Zhenyu, WANG Qingyuan, DAI Guangze, ZHU Yilin. A Study on Wear and Fatigue of High-speed Railway Wheels[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(6): 169-182.
[1] ZHANG Mingru, GU Haicheng. Microstructure and mechanical properties of railway wheels manufactured with low-medium carbon Si-Mn-Mo-V steel[J]. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, 2008, 15(2):125-131. doi:10.1016/s1005-8850(08)60025-0 [2] DEVANATHAN R, CLAYTON P. Rolling-sliding wear behaviour of three bainitic steels[J]. Wear, 1991, 151(2):255-267. doi:10.1016/0043-1648(91)90253-Q [3] CLAYTON P. The relations between wear behavior and basic material properties for pearlitic steels[J]. Wear, 1980, 60(1):75-93. doi:10.1016/0043-1648(80)90250-1 [4] KALOUSEK J, FEGREDO D M, LAUFER E E. The wear resistance and worn metallography of pearlite, bainite and tempered martensite rail steel microstructures of high hardness[J]. Wear, 1985, 105(3):199-222. doi:10.1016/0043-1648(85)90068-7 [5] KUZIAK R, ZYGMUNT T. A new method of rail head hardening of standard-gauge rails for improved wear and damage resistance[J]. Steel Research International, 2013, 84(1):13-19. doi:10.1002/srin.201200140 [6] FANG Xiuyang, ZHAO Yongxiang, LIU Huanwei. Study on fatigue failure mechanism at various temperatures of a high-speed railway wheel steel[J]. Materials Science and Engineering A, 2017, 696:299-314. doi:10.1016/j.msea.2017.04.042 [7] DONZELLA G, FACCOLI M, MAZZù A, et al. Progressive damage assessment in the near-surface layer of railway wheel-rail couple under cyclic contact[J]. Wear, 2011, 271(1-2):408-416. doi:10.1016/j.wear.2010.10.042 [8] SCIAMMARELLA C, CHEN R J S, GALLO P, et al. Experimental evaluation of rolling contact fatigue in railroad wheels[J]. International Journal of Fatigue, 2016, 91:158-170. doi:10.1016/j.ijfatigue.2016.05.035 [9] CARTER F W. On the action of a locomotive driving wheel[J]. Proceedings of the Royal Society A, 1926, 112:151-157. doi:10.1098/rspa.1926.0100 [10] LUNDBERG G, PALMGREN A. Dynamic capacity of rolling bearings[J]. Acta Polytechnica, 1947, 1(3):1-52. [11] CAVUTO A, MARTARELLI M, PANDARESE G, et al. Train wheel diagnostics by laser ultrasonics[J]. Measurement, 2016, 80:99-107. doi:10.1016/j.measurement.2015.11.014 [12] REZENDE A B, FONSECA S T D, FERNANDES F M, et al. Wear behavior of bainitic and pearlitic microstructures from microalloyed railway wheel steel[J]. Wear, 2020, 456-457:203377. doi:10.1016/j.wear.2020.203377 [13] HU Y, ZHOU L, DING H H, et al. Microstructure evolution of railway pearlitic wheel steels under rolling-sliding contact loading[J]. Tribology International, 2020, 154:106685. doi:10.1016/j.triboint.2020.106685 [14] ZENG Dongfang, LU Liantao, GONG Yanhua, et al. Optimization of strength and toughness of railway wheel steel by alloy design[J]. Materials and Design, 2016, 92:998-1006. doi:10.1016/j.matdes.2015.12.096 [15] EKBERG A, LINDQVIST R, OLOFSSON M. Multiaxial fatigue-a probabilistic analysis of initiation in cases of defined stress cycles[C]. Beijing:The Seventh International Fatigue Congress, 1999. [16] LI Y F, ZUO M J, LIN J H, et al. Fault detection method for railway wheel flat using an adaptive multiscale morphological filter[J]. Mechanical Systems and Signal Processing, 2017, 84:642-658. doi:10.1016/j.ymssp.2016.07.009 [17] LUNDÉN R, PAULSSON B. Wheel-rail interface handbook[M]. Boca Raton:Elsevier, 2009. [18] EKBERG A, ÅKESSON B, KABO E. Wheel/rail rolling contact fatigue:Probe, predict, prevent[J]. Wear, 2014, 314(1-2):2-12. doi:10.1016/j.wear.2013.12.004 [19] ZENG Dongfang, LU Liantao, ZHANG Jiwang, et al. Effect of micro-inclusions on subsurface-initiated rolling contact fatigue of a railway wheel[J]. Journal of Rail and Rapid Transit, 2016, 230(2):544-553. doi:10.1177/0954409714551808 [20] DIRKS B, ENBLOM R, BERG M. Prediction of wheel profile wear and crack growth-comparisons with measurements[J]. Wear, 2016, 366-367:84-94. doi:10.1016/j.wear.2016.06.026 [21] 金学松, 赵国堂, 梁树林, 等. 高速铁路轮轨磨损特征, 机理, 影响和对策——车轮踏面横向磨耗[J]. 机械工程学报, 2018, 54(4):3-13. doi:10.3901/JME.2018.04.003 JIN Xuesong, ZHAO Guotang, LIANG Shulin, et al. Characteristics, mechanisms, influences and counter measures of high speed wheel/rail wear:Transverse wear of wheel tread[J]. Journal of Mechanical Engineering, 2018, 54(4):3-13. doi:10.3901/JME.2018.04.003 [22] 朱海燕, 胡华涛, 尹必超, 等. 轨道车辆车轮多边形研究进展[J]. 交通运输工程学报, 2020, 20(1):102-119. doi:10.19818/j.cnki.1671-1637.2020.01.008 ZHU Haiyan, HU Huatao, YIN Bichao, et al. Research progress on wheel polygons of rail vehicles[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1):102-119. doi:10.19818/j.cnki.1671-1637.2020.01.008 [23] ENBLOM R, STICHEL S. Industrial implementation of novel procedures for the prediction of railway wheel surface deterioration[J]. Wear, 2011, 271(1-2):203-209. doi:10.1016/j.wear.2010.10.037 [24] ZHONG W, HU J J, LI Z B, et al. A study of rolling contact fatigue crack growth in U75V and U71 Mn rails[J]. Wear, 2011, 271(1-2):388-392. doi:10.1016/j.wear.2010.10.071 [25] RINGSBERG J W. Shear mode growth of short surfacebreaking RCF cracks[J]. Wear, 2005, 258(7-8):955-963. doi:10.1016/j.wear.2004.03.043 [26] DONZELLA G, MAZZÙA, PETROGALLI C. Competition between wear and rolling contact fatigue at the wheelrail interface:Some experimental evidence on rail steel[J]. Journal of Rail and Rapid Transit, 2009, 223(1):31-44. doi:10.1243/09544097JRRT161 [27] DONZELLA G, FACCOLI M, GHIDINI A, et al. The competitive role of wear and RCF in a rail steel[J]. Engineering Fracture Mechanics, 2005, 72(2):287-308. doi:10.1016/j.engfracmech.2004.04.011 [28] CONSTABLE T, BOELEN R, PERELOMA E V. The quest for improved wheel steels enters the martensitic phase[C]. Orlando:14th International Wheelset Congress, 2004. [29] LI Gen, HONG Zhiyuan, YAN Qingzhi. The influence of microstructure on the rolling contact fatigue of steel for high-speed-train wheel[J]. Wear, 2015, 342-343:349-355. doi:10.1016/j.wear.2015.10.002 [30] FANG Xiuyang, HUANG Wei, YANG Xufeng, et al. Effects of temperature on fatigue cracks initiation and propagation for a high-speed railway wheel rim steel[J]. Engineering Failure Analysis, 2020, 109:104376. doi:10.1016/j.engfailanal.2020.104376 [31] PENG D, JONES R, CONSTABLE T, et al. The tool for assessing the damage tolerance of railway wheel under service conditions[J]. Theoretical and Applied Fracture Mechanics, 2012, 57:1-13. doi:10.1016/j.tafmec.2011.12.002 [32] HANDA K, KIMURA Y, MISHIMA Y. Surface cracks initiation on carbon steel railway wheels under concurrent load of continuous rolling contact and cyclic frictional heat[J]. Wear, 2010, 268(1-2):50-58. doi:10.1016/j.wear. 2009.06.029 [33] VILLAS BAS R L, CUNHA A P A, FONSECA S T, et al. Eefeitos da adição de nióbio e molibdênio em aço 0.7% para fabricação de rodas ferroviárias[C]. Paraíba, Brasil:VI National Congress of Mechanical Engineering, 2010. [34] DING H H, FU Z K, WANG W J, et al. Investigation on the effect of rotational speed on rolling wear and damage behaviors of wheel/rail materials[J]. Wear, 2015, 330-331:563-570. doi:10.1016/j.wear.2014.12.043 [35] 李自彬, 郭俊, 王文健, 等. 车轮转速对列车车轮磨损性能的影响[J]. 机械工程材料, 2010, 34(6):24-27. LI Zibin, GUO Jun, WANG Wenjian, et al. Effect of wheel speed on wear properties of train wheel[J]. Materials for Mechanical Engineering, 2010, 34(6):24-27. [36] 应忠良. 变轴重工况下轮轨磨损性能研究[D]. 成都:西南交通大学, 2015. YING Zhongliang. Research on wheel-rail wear performance under variable axle load[D]. Chengdu:Southwest Jiaotong University, 2015. [37] 黄洁, 周琰, 彭金方, 等. 高转速、不同法向载荷条件下车轮与钢轨间的滚动摩擦磨损及损伤行为[J]. 机械工程材料, 2016, 40(6):88-92. doi:10.11973/jxgccl201606019 HUANG Jie, ZHOU Yan, PENG Jinfang, et al. Rolling friction and wear, and damage behavior of wheel/rail at high rotation speed and different normal loads[J]. Materials for Mechanical Engineering, 2016, 40(6):88-92. doi:10.11973/jxgccl201606019 [38] 王文健, 郭俊, 刘启跃. 车轮钢的滚动剥离损伤[J]. 机械工程材料, 2010, 34(8):9-11. WANG Wenjian, GUO Jun, LIU Qiyue. Rolling spalling damage of wheel steel[J]. Materials for Mechanical Engineering, 2010, 34(8):9-11. [39] ZHU Yi, LÜ Yezhe, OLOFSSON U, et al. Mapping the friction between railway wheels and rails focusing on environmental conditions[J]. Wear, 2015, 324-325:122-128. doi:10.1016/j.wear.2014.12.028 [40] ZHOU Guiyuan, HE Chenggang, WEN Guang, et al. Fatigue damage mechanism of railway wheels under lateral forces[J]. Tribology International, 2015, 91:160-169. doi:10.1016/j.triboint.2015.07.008 [41] ZHU Y, CHEN X, WANG W J, et al. A study on iron oxides and surface roughness in dry and wet wheel-rail contacts[J]. Wear, 2015, 328-329:241-248. doi:10.1016/j.wear.2015.02.025 [42] HE C G, HUANG Y B, MA L, et al. Experimental investigation on the effect of tangential force on wear and rolling contact fatigue behaviors of wheel material[J]. Tribology International, 2015, 92:307-316. doi:10.1016/j.triboint.2015.07.012 [43] LEWIS R, DWYER-JOYCE R S. Wear mechanisms and transitions in railway wheel steels[J]. Journal of Engineering Tribology, 2004, 218(6):467-478. doi:10.1243/1350650042794815 [44] 丁昊昊, 王文健, 郭俊, 等. 轴重对轮轨材料滚动磨损与损伤行为影响[J]. 材料工程, 2015, 43(10):35-41. doi:10.11868/j.issn.1001-4381.2015.10.006 DING Haohao, WANG Wenjian, GUO Jun, et al. Effect of axle-load on rolling wear and damage behaviors of wheel and rail materials[J]. Journal of Materials Engineering, 2015, 43(10):35-41. doi:10.11868/j.issn.10014381.2015.10.006 [45] 陈大中, 杨克, 郑方翎. 钢轨表面损伤及抗磨方法的研究[C]. 北京:全国第二届表面工程学术研讨会, 1991. CHEN Dazhong, YANG Ke, ZHENG Fangjun. Study on rail surface damage and anti-wear method[C]. Beijing:The 2nd National Symposium on Surface Engineering, 1991. [46] 王文健, 刘启跃, 周仲荣. 车轮钢滚动剥离摩擦磨损特性研究[J]. 摩擦学学报, 2005, 25(5):475-479. doi:10.3321/j.issn:1004-0595.2005.05.020 WANG Wenjian, LIU Qiyue, ZHOU Zhongrong. Study on friction and wear properties of wheel steel under rollingsliding condition[J]. Tribology, 2005, 25(5):475-479. doi:10.3321/j.issn:1004-0595.2005.05.020 [47] PARKER R C, MARSHALL P R. The measurement of the temperature of sliding surfaces with particular reference to railway brake blocks[J]. Proceedings of the Institution of Mechanical Engineers, 1948, 158:209-229. doi:10.1243/PIME_PROC_1948_158_026_02 [48] VERNERSSON T. Thermally induced roughness of treadbraked railway wheels Part 1:Brake rig experiments[J]. Wear, 1999, 236(1-2):96-105. doi:10.1016/S0043-1648(99)00260-4 [49] ZHANG M R, GU H C. Fracture toughness of nanostructured railway wheels[J]. Engineering Fracture Mechanics, 2008, 75:5113-5121. doi:10.1016/j.engfracmech.2008.07.007 [50] BERNASCONI A, FILIPPINI M, FOLETTI S, et al. Multiaxial fatigue of a railway wheel steel under nonproportional loading[J]. International Journal of Fatigue, 2006, 28(5-6):663-672. doi:10.1016/j.ijfatigue.2005.07.045 [51] LIU Y M, STRATMAN B, MAHADEVAN S. Fatigue crack initiation life prediction of railroad wheels[J]. International Journal of Fatigue, 2006, 28(7):747-756. doi:10.1016/j.ijfatigue.2005.09.007 [52] BRUNEL J F, CHARKALUK E, DUFRÉNOY P, et al. Rolling contact fatigue of railways wheels:Influence of steel grade and sliding conditions[J]. Procedia Engineering, 2010, 2(1):2161-2169. doi:10.1016/j.proeng.2010.03.232 [53] TONG J, ZHAO L G, LIN B. Ratchetting strain as a driving force for fatigue crack growth[J]. International Journal of Fatigue, 2013, 46:49-57. doi:10.1016/j.ijfatigue.2012.01.003 [54] FRANKLIN F J, CHUNG T, KAPOOR A. Ratcheting and fatigue-led wear in rail-wheel contact[J]. Fatigue and Fracture of Engineering Materials and Structures, 2003, 26(10):949-955. doi:10.1046/j.1460-2695.2003.00703.x [55] TARAF M, ZAHAF E H, OUSSOUADDI O, et al. Numerical analysis for predicting the rolling contact fatigue crack initiation in a railway wheel steel[J]. Tribology International, 2010, 43(3):585-593. doi:10.1016/j.triboint.2009.09.007 [56] BEVAN A, MOLYNEUX-BERRY P, EICKHOFF B, et al. Development and validation of a wheel wear and rolling contact fatigue damage model[J]. Wear, 2013, 307(1-2):100-111. doi:10.1016/j.wear.2013.08.004 [57] HANDA K, MORIMOTO F. Influence of wheel/rail tangential traction force on thermal cracking of railway wheels[J]. Wear, 2012, 289:112-118. doi:10.1016/j.wear.2012.04.008 [58] MAKINO T, KATO T, HIRAKAWA K. The effect of slip ratio on the rolling contact fatigue property of railway wheel steel[J]. International Journal of Fatigue, 2012, 36(1):68-79. doi:10.1016/j.ijfatigue.2011.08.014 [59] VASIC G, FRANKLIN F J, FLETCHER D I. Influence of partial slip and direction of traction on wear rate in wheelrail contact[J]. Wear, 2011, 270(3-4):163-171. doi:10.1016/j.wear.2011.04.009 [60] WANG W J, LIU T F, WANG H Y, et al. Influence of friction modifiers on improving adhesion and surface damage of wheel/rail under low adhesion conditions[J]. Tribology International, 2014, 75:16-23. doi:10.1016/j.triboint.2014.03.008 [61] ZHOU G Y, LIU J H, WANG W J, et al. Study on the fatigue and wear characteristics of four wheel materials[J]. Journal of Modern Transportation, 2013, 21(3):182-193. doi:10.1007/s40534-013-0021-z [62] EKBERG A, KABO E. Fatigue of railway wheels and rails under rolling contact and thermal loading-an overview[J]. Wear, 2005, 258(7):1288-1300. doi:10.1016/j.wear.2004.03.039 [63] BARTLEY G W. A practical view of wheel tread shelling[C]. Montreal, Canada:The Ninth International Wheelset Congress, 1988. [64] LIU H Y, WANG N, ZHEN H B. Thermal damage test research of speed increased freight cars' wheel tread[C]. Rome, Italy:The 13th International Wheelset Congress, 2001. [65] LUNDéN R. Contact region fatigue of railway wheels under combined mechanical rolling pressure and thermal brake loading[J]. Wear, 1991, 144(1):57-70. doi:10.1016/0142-1123(92)90195-I [66] OPINSKY A J. Understanding rim thermal failures in freight car wheels[C]. Montreal, Canada:The Ninth International Wheelset Congress, 1988. [67] OSUCH K, STONE D H, ORRINGER O. European and American wheels and their resistance to thermal damage[C]. Paris, France:The 11th International Wheelset Congress, 1995. [68] SOARES H, ANES V, FREITAS M, et al. Fatigue life of a railway wheel under uniaxial and multiaxial loadings[J]. Procedia Structural Integrity, 2018, 13:1786-1791. doi:10.1016/j.prostr.2018.12.362 [69] AHLSTRÖM J, KARLSSON B. Microstructural evaluation and interpretation of the mechanically and thermally affected zone under railway wheel flats[J]. Wear, 1999, 232(1):1-14. doi:10.1016/s0043-1648(99)00166-0 [70] JERGEUS J. Railway wheel flats-martensite formation, residual stresses, and crack propagation[D]. Göteborg, Sweden:Department of Solid Mechanics, Chalmers University of Technology, 1998. [71] MAGEL E, KALOUSEK J. Identifying and interpreting railway wheel defects[C]. Montreal, Quebec:The International Heavy Haul Conference on Running Heavy, Running Fast into the 21st Century, 1996. [72] FEC M C, UTRATA D. Elevated temperature fatigue behaviour of class B, C and U wheels[C]. New York:Proceedings ASME Rail Transportation Spring Conference, 1985. [73] SAWLEY K J, ROSSER J A. Tread damage in discbraked wheels[C]. Montreal, Canada:The Ninth International Wheelset Congress, 1988. [74] JERGéUS J. Martensite formation and residual stress around railway wheel flats[J]. Journal of Rail and Rapid Transit, 1998, 212:69-79. [75] NAUMANN F K. Das Buch der Schadensfälle, Untersuchen-Beyrteilen-Vermeiden[M]. Stuttgart:Dr RiedererVerlag, 1976. [76] 周桂源, 何成刚, 刘吉华, 等. 冲角工况下列车车轮损伤机理研究[J]. 摩擦学学报, 2015, 35(6):768-773. doi:10.16078/j.tribology.2015.06.017 ZHOU Guiyuan, HE Chenggang, LIU Jihua, et al. Damage mechanism of railway wheels under condition with angle of attack[J]. Tribology, 2015, 35(6):768-773. doi:10.16078/j.tribology.2015.06.017 [77] EKBERG A, SOTKOVSZKI P. Anisotropy and fatigue of railway wheels[J]. International Journal of Fatigue, 2001, 23(1):29-43. doi:10.1016/S0142-1123(00)00070-0 [78] ZENG Dongfang, XU Tian, LIU Weidong, et al. Investigation on rolling contact fatigue of railway wheel steel with surface defect[J]. Wear, 2020, 446-447:203207. doi:10.1016/j.wear.2020.203207 [79] GHONEM H, KALOUSEK J. Study of surface crack initiation due to biaxial compression/shear loading[J]. Engineering Fracture Mechanics, 1988, 30(5):667-683. doi:10.1016/0013-7944(88)90158-0 [80] 张关震, 任瑞铭, 丛韬, 等. 时速250 km等级动车组自主化车轮的耐磨性能试验研究[J]. 中国铁道科学, 2017, 38(1):117-122. doi:10.3969/j.issn.1001-4632.2017.01.16 ZHANG Guanzhen, REN Ruiming, CONG Tao, et al. Test study on wear resistance of domestic wheel for 250 km/h high speed EMU[J]. China Railway Science, 2017, 38(1):117-122. doi:10.3969/j.issn.1001-4632.2017.01.16 [81] 陈水友, 刘吉华, 郭俊, 等. 车轮材料特性对轮轨磨损与疲劳性能影响的研究[J]. 摩擦学学报, 2015, 35(5):531-537. doi:10.16078/j.tribology.2015.05.003 CHEN Shuiyou, LIU Jihua, GUO Jun, et al. Effect of wheel material characteristics on wear and fatigue property of wheel-rail[J]. Tribology, 2015, 35(5):531-537. doi:10.16078/j.tribology.2015.05.003 [82] CANTINI S, CERVELLO S. The competitive role of wear and RCF:Full scale experimental assessment of artificial and natural defects in railway wheel treads[J]. Wear, 2016, 366-367:325-337 doi:10.1016/j.wear.2016.06.020 [83] FARHANGDOOST K, KAVOOSI M. Effect of lubricant on surface rolling contact fatigue cracks[J]. Advanced Materials Research, 2010, 97-101:793-796. doi:10.4028/www.scientific.net/AMR.97-101.793 [84] MAZZÙ A, PETROGALLI C, FACCOLI M. An integrated model for competitive damage mechanisms assessment in railway wheel steels[J]. Wear, 2015, 322-323:181191. doi:10.1016/j.wear.2014.11.013 [85] BOGDAŃSKI S, LEWICKI P. 3D model of liquid entrapment mechanism for rolling contact fatigue cracks in rails[J]. Wear, 2008, 265(9-10):1356-1362. doi:10.1016/j.wear.2008.03.014 [86] BOWER F A. The influence of crack face friction and trapped fluid on surface initiated rolling contact fatigue cracks[J]. Journal of Tribology, 1988, 110:704-711. doi:10.1115/1.3261717 [87] ZUCARELLI T A, VIEIRA M A, MOREIRA FILHO L A, et al. Failure analysis in railway wheels[J]. Procedia Structural Integrity, 2016, 1:212-217. doi:10.1016/j.prostr.2016.02.029 [88] 方修洋, 黄伟, 王俊国. 温度对动车组车轮钢服役次生疲劳裂纹起裂扩展特性影响[J]. 中国机械工程, 2020, 31(3):261-266. doi:10.3969/j.issn.1004-132X.2020.03.002 FANG Xiuyang, HUANG Wei, WANG Junguo. Effects of temperature on secondary fatigue crack initiation and growth behavior of high-speed railway wheel steels[J]. China Mechanical Engineering, 2020, 31(3):261-266. doi:10.3969/j.issn.1004-132X.2020.03.002 [89] FLETCHER D I, HYDE P, KAPOOR A. Modelling and full-scale trials to investigate fluid pressurization of rolling contact fatigue cracks[J]. Wear, 2008, 265(9):1317-1324. doi:10.1016/j.wear.2008.02.025 [90] EKBERG A, MARAIS J. Effects of imperfections on fatigue initiation in railway wheels[J]. Journal of Rail and Rapid Transit, 1999, 214(1):45-54. doi:10.1243/0954409001531234 [91] MARAIS J. Wheel failures on heavy haul freight wheels due to subsurface effects[C]. Qingdao:The 12th International Wheelset Congress, 1998. [92] BERETTA S, DONZELLA G, ROBERTI R, et al. Deep shelling in railway wheels[C]. Rome, Italy:The 13th International Wheelset Congress, 2001. [93] MUTTON P J, EPP C J, DUDEK J. Rolling contact fatigue in railway wheels under high axle loads[J]. Wear, 1991, 144(1-2):139-152. doi:10.1016/0043-1648(91)90011-I [94] STONE D, LONSDALE C, KALAY S. Effect of wheel impact loading on shattered rims[C]. Rome, Italy:The 13th International Wheelset Congress, 2001. [95] GIMÉNEZ J G, SOBEJANO H. Theoretical approach to the crack growth and fracture of wheels[C]. Paris:the 11th International Wheelset Congress, 1995. [96] KABO E, EKBERG A. Fatigue initiation in railway wheels:A numerical study of the influence of defects[J]. Wear, 2002, 253(1-2):26-34. [97] KABO E. Material defects in rolling contact fatigue:Influence of overloads and defect clusters[J]. International Journal of Fatigue, 2002, 24:887-894. doi:10.1016/s0142-1123(01)00193-1 [98] KHAN M R, DASAKA S M. Wheel-rail interactions in high speed railway networks during rapid train transit[J]. Materials Today:Proceedings, 2018, 5(11):25450-25457. doi:10.1016/j.matpr.2018.10.350 [99] 丛韬, 张斌, 付秀琴, 等. 重载和高速列车车轮轮辋疲劳裂纹萌生机理研究[C]. 黄山:2013年铁路和建筑用钢学术研讨会, 2013. CONG Tao, ZHANG Bin, FU Xiuqin, et al. Study on fatigue crack initiation mechanism of wheel rims in heavyduty and high-speed trains[C]. Huangshan:2013 Academic Conference on Railway and Construction Steel, 2013. [100] SOARES H, ZUCARELLI T, VIEIRA M, et al. Experimental characterization of the mechanical properties of railway wheels manufactured using class B material[J]. Procedia Structural Integrity, 2016, 1:265-272. doi:10.1016/j.prostr.2016.02.036 [101] ALFREDSSON B. A study on contact fatigue mechanisms[D]. Sweden:Royal Institute of Technology, 2000. [102] OLSSON M. Contact fatigue and tensile stresses[M]. Netherlands:Engineering Against Fatigue, 1999. [103] 赵相吉, 师陆冰, 王文健, 等. 硌伤形貌对车轮材料滚动接触疲劳特性的影响[J]. 中国机械工程, 2019, 30(3):278-283. doi:10.3969/j.issn.1004-132X.2019.03.005 ZHAO Xiangji, SHI Lubing, WANG Wenjian, et al. Effects of defect morphologies on rolling contact fatigue characteristics of wheel materials[J]. China Mechanical Engineering, 2019, 30(3):278-283. doi:10.3969/j.issn.1004-132X.2019.03.005 |
[1] | 崔仁浩, 张健萍, 贺元骅, 阳邦. 高温环境2A12–T4铝合金多轴疲劳失效规律研究[J]. 西南石油大学学报(自然科学版), 2021, 43(6): 33-41. |
[2] | 徐涛龙, 何恭震, 张毅, 冯伟, 王炜. 氢原子渗透对管线钢微裂纹扩展的影响研究[J]. 西南石油大学学报(自然科学版), 2021, 43(6): 54-61. |
[3] | 张智, 丁剑, 赵苑瑾, 邓虎, 卢齐. 页岩气井环空带压临界控制值计算方法[J]. 西南石油大学学报(自然科学版), 2019, 41(6): 155-164. |
[4] | 薛仁江, 郭建春, 赵志红, 周广清, 孟宪波. 济阳拗陷页岩储层水平井裂缝扩展数值模拟[J]. 西南石油大学学报(自然科学版), 2019, 41(2): 84-96. |
[5] | 刘清友, 何俊江, 毛良杰. 深水钻井隔水管法兰接头压溃安全分析研究[J]. 西南石油大学学报(自然科学版), 2018, 40(5): 163-169. |
[6] | 童华, 陈国银, 祝效华. 等壁厚螺杆钻具橡胶衬套失效研究[J]. 西南石油大学学报(自然科学版), 2017, 39(6): 154-161. |
[7] | 练章华1 *,于浩1,刘永辉2,林铁军1,张强1. 大斜度井中套管磨损机理研究[J]. 西南石油大学学报(自然科学版), 2016, 38(2): 176-182. |
[8] | 姜峰*,郑运虎,梁瑞,杜超飞. 海洋立管湿模态振动分析[J]. 西南石油大学学报(自然科学版), 2015, 37(5): 159-166. |
[9] | 王尊策,梅思杰,陈思,吕凤霞,闫月娟. 电潜泵叶轮冲蚀磨损的数值模拟及验证[J]. 西南石油大学学报(自然科学版), 2014, 36(4): 175-181. |
[10] | 艾志久;李杰;刘绘新;彭旭;胡坤. 基于Workbench 防冲刺短节疲劳寿命分析[J]. 西南石油大学学报(自然科学版), 2013, 35(2): 174-178. |
[11] | 焦中良;帅 健. 含凹陷管道的完整性评价[J]. 西南石油大学学报(自然科学版), 2011, 33(4): 157-164. |
[12] | 况雨春 严金林 王 勤 吴 静. 基于有限元方法的抽油杆管磨损量预测[J]. 西南石油大学学报(自然科学版), 2010, 32(4): 171-174. |
[13] | 张涛a 陈次昌b 李丹c. 低固相含量液流中磨蚀翼型空化特性研究[J]. 西南石油大学学报(自然科学版), 2009, 31(6): 152-155. |
[14] | 刘承杰 邱亚玲 宋振华 庄稼 刘清友. 磨鞋铸造碳化钨铁基复合材料堆焊层强化技术[J]. 西南石油大学学报(自然科学版), 2007, 29(6): 145-148. |
[15] | 杨启明 饶霁阳. 等、变径浮动滑动轴承耐磨性能实验分析研究[J]. 西南石油大学学报(自然科学版), 2007, 29(3): 130-132. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||