[1] 亚伯·斯海维. 结构与材料的疲劳[M]. 吴学仁, 等. 译. 北京:航空工业出版社, 2014. SCHIJVE A. Fatigue of structures and materials second edition[M]. WU Xueren, et al. Trans. BeiJing:Aviation Industry Press, 2014. [2] 尚德广, 王德俊. 多轴疲劳强度[M]. 北京:科学出版社, 2007. SHANG Deguang, WANG Dejun. Multiaxial fatigue strength[M]. Beijing:Science Press, 2007. [3] 洪友士, 方飙. 疲劳短裂纹萌生及发展的细观过程和理论[J]. 力学进展, 1993, 23(4):468-486. HONG Youshi, FANG Biao. Microscopic process and description for the initiation and propagation of short fatigue cracks[J]. Advance in mechanics, 1993, 23(4):468486. [4] 尚德广, 王大康, 孙国芹, 等. 多轴疲劳裂纹扩展行为研究[J]. 机械强度, 2004, 26(4):423-427. doi:10.3321/j.issn:1001-9669.2004.04.015 SHANG Deguang, WANG Dakang, SUN Guoqin, et al. Behavior of multiaxial fatigue crack propagation[J]. Journal of Mechanical Strength, 2004, 26(4):423-427. doi:10.3321/j.issn:1001-9669.2004.04.015 [5] NAVARRO A, VALLELLANO C, CHAVES V, et al. A microstructural model for biaxial fatigue conditions[J]. International Journal of Fatigue, 2011, 33(8):1048-1054. doi:10.1016/j.ijfatigue.2010.11.001 [6] VERREMAN Y, GUO H. High-cycle fatigue mechanisms in 1045 steel under non-proportional axial-torsional loading[J]. Fatigue & Fracture of Engineering Materials and Structures, 2007, 30(10):932-946. doi:10.1111/j.1460-2695.2007.01164.x [7] SUSMEL L, PETRONE N. Multiaxial fatigue life estimations for 6082-T6 cylindrical specimens under in-phase and out-of-phase biaxial loadings[J]. European Structural Integrity Society, 2003, 31:83-104. doi:10.1016/S1566-1369(03)80006-7 [8] SINGH A K, DATTA S, CHATTOPADHYAY A, et al. Characterization of crack propagation behavior in Al-7075 under in-plane biaxial fatigue loading with shear overloads[J]. International Journal of Fatigue, 2020, 134(5):105529. doi:10.1016/j.ijfatigue.2020.105529 [9] LIU T, SHI X, ZHANG J Y, et al. Crack initiation and propagation of 30CrMnSiA steel under uniaxial and multiaxial cyclic loading[J]. International Journal of Fatigue, 2019, 122:240-255. doi:10.1016/j.ijfatigue.2019.02.001 [10] LIU Tianqi, SHI Xinhong, ZHANG Jianyu, et al. Multiaxial high-cycle fatigue failure of 30CrMnSiA steel with mean tension stress and mean shear stress[J]. International Journal of Fatigue, 2019, 129:105219. doi:10.1016/j.ijfatigue.2019.105219 [11] 陈亚军, 王先超, 王付胜, 等. 相位差加载条件下2A12铝合金多轴疲劳失效行为[J]. 材料导报, 2017, 31(14):147-152. doi:10.11896/j.issn.1005-023X.2017.014.031 CHEN Yajun, WANG Xianchao, WANG Fusheng et al. Failure behavior of multiaxial fatigue for 2A12 aluminum alloy subjected to different phase angle loading conditions[J]. Materials Review, 2017, 31(14):147-152. doi:10.11896/j.issn.1005-023X.2017.014.031 [12] 陈亚军, 王先超, 王付胜, 等. 2A12铝合金的多轴加载疲劳行为[J]. 材料工程, 2017, 45(8):68-75. doi:10.11868/j.issn.1001-4381.2015.001451 CHEN Yajun, WANG Xianchao, WANG Fusheng, et al. Fatigue behavior of 2A12 aluminum alloy under multiaxial loading[J]. Journal of materials Engineering, 2017, 45(8):68-75. doi:10.11868/j.issn.1001-4381.2015.001451 [13] 陈亚军, 王先超, 王付胜, 等. 不同应力幅比加载下2A12铝合金的多轴疲劳性能[J]. 材料工程, 2017, 45(9):136-142. doi:10.11868/j.issn.1001-4381.2016.000817 CHEN Yajun, WANG Xianchao, WANG Fusheng, et al. Multiaxial fatigue properties of 2A12 aluminum alloy under different stress amplitude ratio loadings[J]. Journal of materials Engineering, 2017, 45(9):136-142. doi:10.11868/j.issn.1001-4381.2016.000817 [14] 朱正宇. 铸造铝合金多轴非比例加载低周疲劳特性及其微观机理的研究[D]. 上海:同济大学, 2007. doi:10.7666/d.w1658612 ZHU Zhengyu. Study on low cycle fatigue characteristics and micro-mechanism of cast aluminum alloy under multiaxial non-proportional loading[D]. Shanghai:Tongji University, 2007. doi:10.7666/d.w1658612 [15] 朱正宇, 何国求, 陈成澍, 等. 铸造铝合金在多轴非比例载荷下的低周疲劳行为研究[J]. 铸造, 2006, 55(12):1275-1279. doi:10.3321/j.issn:1001-4977.2006.12.014 ZHU Zhengyu, HE Guoqiu, CHEN Chengpeng, et al. Study on multi-axial low cycle fatigue properties for under nonproportional loading of cast aluminum alloy[J]. Foundry, 2006, 55(12):1275-1279. doi:10.3321/j.issn:-1001-4977.2006.12.014 [16] 朱正宇, 何国球, 张卫华, 等. 非比例载荷下多轴疲劳微观机理的研究进展[J]. 同济大学学报(自然科学版), 2006(11):1510-1514. doi:10.3321/j.issn:0253-374X.2006.11.018 ZHU Zhengyu, HE Guoqiu, ZHANG Weihua, et al. Recent advances in micromechanisms of multiaxial fatigue under nonproportional loading[J]. Journal of Tongji University (Natural Science), 2006(11):1510-1514. doi:10.3321/j.issn:0253-374X.2006.11.018 [17] ZHANG Jianyu, SHI Xinhong, BAO Rui, et al. High cycle fatigue and fracture mode analysis of 2A12-T4 aluminum alloy under out-of-phase axial-torsion constant amplitude loading[J]. International Journal of Fatigue, 2012, 38:144-154. doi:10.1016/j.ijfatigue.2011.12.017 [18] ZHANG Jianyu, SHI Xinhong, BAO Rui, et al. Tension-torsion high-cycle fatigue failure analysis of 2A12-T4 aluminum alloy with different stress ratios[J]. International Journal of Fatigue, 2011, 33(8):1066-1074. doi:10.1016/j.ijfatigue.2010.12.007 [19] 时新红, 张建宇, 鲍蕊, 等. 拉扭复合加载下相位差对2A12-T4铝合金高周疲劳失效的影响[J]. 航空材料学报, 2010, 30(5):93-96. SHI Xinhong, ZHANG Jianyu, BAO Rui, et al. Effect of phase angle on high-cycle fatigue failure of 2A12-T4 aluminum alloy under tension-torsion non-proportional loading[J]. Journal of Aeronautical Materials, 2010, 30(5):93-96. [20] 时新红, 张建宇, 鲍蕊, 等. 比例加载下应力幅比对2A12-T4疲劳寿命的影响[J]. 北京航空航天大学学报, 2010, 36(8):965-968. doi:10.13700/j.bh.1001-5965.2010.08.003 SHI Xinhong, ZHANG Jianyu, BAO Rui, et al. Effect of stress amplitude on high-cycle fatigue life of 2A12-T4 aluminum alloy under proportional loading[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(8):965-968. doi:10.13700/j.bh.1001-5965.2010.08.003 [21] 亓新新, 张婷, 时新红, 等. 比例与非比例加载下30CrMnSiA钢多轴高周疲劳失效分析[J]. 航空动力学报, 2019, 34(6):1237-1245. doi:10.13224/j.cnki.jasp.2019.06.007 QI Xinxin, ZHANG Ting, SHI Xinhong, et al. Analysis on multiaxial high-cycle fatigue failure of 30CrMnSiA steel under proportional and non-proportional loading[J]. Journal of Aerospace Power, 2019, 34(6):1237-1245. doi:10.13224/j.cnki.jasp.2019.06.007 [22] 杨冰. LZ50车轴钢的随机疲劳短裂纹行为研究[D]. 成都:西南交通大学, 2010. YANG Bing. Study on the random short fatigue crack behavior of LZ50 axle steel[D]. Chengdu:Southwest Jiaotong University, 2010. [23] 廖贞. 拉扭复合载荷作用下LZ50钢疲劳短裂纹行为研究[D]. 成都:西南交通大学, 2018. LIAO Zhen. Study on short fatigue crack behavior of LZ50 steel under tension-torsion loading[D]. Chengdu:Southwest Jiaotong University, 2018. [24] 刘波. 拉扭复合受力条件下金属材料的失效研究[D]. 天津:中国民航大学, 2016. LIU Bo. Research on failure of metal materials under tension-torsion combined force[D]. Tianjin:Civil Aviation University of China, 2016. [25] 华寅初, 赵京艳, 苏美容. 压裂泵阀箱钢43CrNi2MoV疲劳断裂的试验研究[J]. 西南石油学院学报, 1992, 14(4):7484. HUA Yinchu, ZHAO Jingyan, SU Meirong. Experimental study of fatigue fracture of fracturing pump box steel 43CrNi2MoV[J]. Journal of Southwest Petroleum Institute, 1992, 14(4):74-84. [26] 周秋沙, 周锡容, 杨启明, 等. 冲击磨料磨损机理研究[J]. 西南石油学院学报, 1996, 18(3):82-88. ZHOU Qiusha, ZHOU Xirong, YANG Qiming, et al. Mechanism researcch of abrasive wear under impacting condition[J]. Journal of Southwest Petroleum Institute, 1996, 18(3):82-88. [27] 林万家, 张建宇, 刘天奇, 等. 应力幅比对2A12-T4铝合金多轴疲劳裂纹萌生及扩展行为的影响[J]. 重庆大学学报, 2020, 43(10):79-89. doi:10.11835/j.issn.1000-582X.2019.259 LIN Wanjia, ZHANG Jianyu, LIU Tianqi, et al. Effect of stress amplitude ratio on multiaxial fatigue crack initiation and propagation behavior of 2A12-T4 aluminum alloy[J]. Journal of Chongqing University, 2020, 43(10):79-89. doi:10.11835/j.issn.1000-582X.2019.259 [28] FATEMI A, SHAMSAEI N. Multiaxial fatigue:An overview and some approximation models for life estimation[J]. International Journal of Fatigue, 2011, 33(8):948-958. doi:10.1016/j.ijfatigue.2011.01.003 [29] 周松, 王宏达, 回丽, 等. 不同结构参数对7075铝合金耳片疲劳裂纹扩展寿命的影响[J]. 机械强度, 2021, 43(6):1430-1435. doi:10.16579/j.issn.1001.9669.2021.06.022 ZHOU Song, WANG Hongda, HUI Li, et al. Effect of different structural parameters on the 7075 aluminum alloy lug fatigue crack growth life[J]. Journal of Mechanical Strength, 2021, 43(6):1430-1435. doi:10.16579/j.issn.1001.9669.2021.06.022 |