[1] 王珊珊, 王伟. AP1000重要模块运输吊装安全措施研究[J]. 中国安全生产科学技术, 2016, 12(S1):97-102. doi:10.11731/j.issn.1673-193x.2016.S1.017 WANG Shanshan, WANG Wei. Study on safety measures for transportation and hoisting of important modules in AP1000[J]. China Work Safety Science and Technology, 2016, 12(S1):97-102. doi:10.11731/j.issn.1673-193x.2016.S1.017 [2] 陈朝明, 马艳琳, 李巧, 等. 安岳气田60×108 m3/a地面工程建设模块化技术[J]. 天然气工业, 2016, 36(9):115-122. doi:CHEN Chaoming, MA Yanlin, LI Qiao, et al. Modular technology of Anyue gas field 60×108 m3/a surface engineering construction[J]. Natural Gas Industry, 2016, 36(9):115-122. doi: [3] 陈朝明, 陈伟才, 李安山, 等. 大型气田地面工程模块化建设模式的优点剖析[J]. 天然气与石油, 2016, 34(1):8-13. doi:10.3969/j.issn.1006-5539.2016.01.002 CHEN Chaoming, CHEN Weicai, LI Anshan, et al. Analysis of the advantages of modular construction mode of large gas field surface engineering[J]. Natural Gas and Oil, 2016, 34(1):8-13. doi:10.3969/j.issn.1006-5539.2016.01.002 [4] 黄育琪. 西澳SINO大型破碎站模块运输性能分析[C]. 天津:全国现代结构工程学术研讨会, 2013:1246-1251. HUANG Yuqi. Transport performance analysis of Sino large crushing station module in Western Australia[C]. Tianjin:The National Symposium on Modern Structural Engineering, 2013:1246-1251. [5] 沈登龙. 模块化钢结构海洋运输的力学模拟[C]. 天津:全国现代结构工程学术研讨会, 2013:1143-1151. SHEN Denglong. Mechanical simulation of marine transportation of modular steel structures[C]. Tianjin:The National Symposium on Modern Structural Engineering, 2013:1143-1151. [6] 肖立, 彭延建, 张超, 等. 基于SACS的CGB模块驳船运输分析[J]. 中国水运, 2014, 14(12):47-52. XIAO Li, PENG Yanjian, ZHANG Chao, et al. Analysis of CGB module barge transportation based on sacs[J]. China Water Transportation, 2014, 14(12):47-52. [7] 钱孟祥, 冯春健. 海洋平台生活模块海上运输分析[J]. 石油工程建设, 2009, 35(6):12-15. doi:10.3969/j.issn.1001-2206.2009.06.004 QIAN Mengxiang, FENG Chunjian. Analysis of off-shore transportation of life module of offshore plat-form[J]. Petroleum Engineering Construction, 2009, 35(6):12-15. doi:10.3969/j.issn.1001-2206.2009.06.004 [8] 塔拉提别克·艾尔肯. 低温LNG运输罐车应力强度分析与疲劳研究[D]. 乌鲁木齐:新疆大学, 2018. TALATIBUK Elken. Stress intensity analysis and fatigue research of low temperature LNG tanker[D]. Urumqi:Xinjiang University, 2018. [9] 滕振超, 刘宇. 高烈度下(双层系)接转站框架结构的动力响应分析[J]. 重庆理工大学学报(自然科学), 2019, 33(6):91-95. doi:10.3969/j.issn.1674-8425(z).2019.06.014 TENG Zhenchao, LIU Yu. Dynamic response analysis of transfer station frame structure under high intensity[J]. Journal of Chongqing University of science and Technology(NATURAL SCIENCE), 2019, 33(6):91-95. doi:10.3969/j.issn.1674-8425(z).2019.06.014 [10] 宫文壮. 广东沿海地区村镇低矮房屋台风易损性研究[D]. 哈尔滨:哈尔滨工业大学, 2009.GONG Wenzhuang. Study on Typhoon vulnerability of low rise houses in coastal areas of Guangdong Province[D]. Harbin:Harbin University of technology, 2009. [11] 汪兴龙. 基于数值模拟的轻钢结构厂房风致易损性研究[D]. 哈尔滨:哈尔滨工业大学, 2019. WANG Xinglong. Study on wind-induced vulnerabil-ity of light steel structure workshop based on nu-merical simulation[D]. Harbin:Harbin University of Technology, 2019. [12] 左媛, 李维滨, 陈诚. 空间与平面钢框架结构地震易损性对比分析[J]. 工业建筑, 2018, 48(12):148-154. ZUO Yuan, LI Weibin, CHEN Cheng. Comparative analysis of seismic vulnerability of space and plane steel frame structure[J]. Industrial Building, 2018, 48(12):148-154. [13] 孔中明. 轻型钢结构厂房考虑雪荷载的风振响应及风灾易损性分析[D]. 苏州:苏州科技大学, 2019. KONG Zhongming. Wind-induced vibration response and vulnerability analysis of light-weight steel structure factory buildings under snow load[D]. Suzhou:Suzhou University of Science and Technology, 2019. [14] 周静海, 闫妍, 孟宪宏, 等. 基于权重系数的既有结构风灾易损性分析[J]. 沈阳建筑大学学报(自然科学版), 2017, 33(4):606-612. doi:10.11717/j.issn:2095-1922.2017.04.04 ZHOU Jinghai, YAN Yan, MENG Xianhong, et al. Vulnerability analysis of existing structures in wind disaster based on weight coefficient[J]. Journal of Shenyang University of Architecture(Natural Science Edition), 2017, 33(4):606-612. doi:10.11717/j.issn:2095-1922.2017.04.04 [15] 闫妍. 多重灾害下既有建筑的易损性分析[D]. 沈阳:沈阳建筑大学, 2016. YAN Yan. Vulnerability analysis of existing buildings under multiple disasters[D]. Shenyang:Shenyang University of Architecture, 2016. |