[1] ZHENG Dewen, ZHANG Gangxiong, WEI Huan, et al. Countermeasures and suggestions on natural gas peak shaving and supply guarantee in China[J]. Natural Gas Industry, 2018, 38(4): 153-160. doi:10.3787/j.issn.1000-0976.2018.04.018 郑得文, 张刚雄, 魏欢, 等. 中国天然气调峰保供的策略与建议[J]. 天然气工业, 2018, 38(4): 153-160. doi:10.3787/j.issn.1000-0976.2018.04.018 [2] ZENG Daqian, ZHANG Junfa, ZHANG Guangquan, et al. Research progress of Sinopec's key underground gas storage construction technologies[J]. Natural Gas Industry, 2020, 40(6): 115-123. doi:10.3787/j.issn.1000-0976.2020.06.012 曾大乾, 张俊法, 张广权, 等. 中石化地下储气库建库关键技术研究进展[J]. 天然气工业, 2020, 40(6): 115-123. doi:10.3787/j.issn.1000-0976.2020.06.012 [3] SUN Junchang, XU Hongcheng, WANG Jieming, et al. Injection-production mechanisms and key evaluation technologies for underground gas storages rebuilt from gas reservoirs[J]. Natural Gas Industry, 2018, 38(4): 138-144. doi:10.3787/j.issn.1000-0976.2018.04.016 孙军昌, 胥洪成, 王皆明, 等. 气藏型地下储气库建库注采机理与评价关键技术[J]. 天然气工业, 2018, 38(4): 138-144. doi:10.3787/j.issn.1000-0976.2018.04.016 [4] JING Gang, HE Jun, CHEN Jiasong, et al. Maximum pressure threshold increase test for Jintan salt cavern gas storage[J]. Journl of Southwest Petroleum University (Science & Technology Edition), 2018, 40(6): 77-84. doi:10.11885/j.issn.1674-5086.2017.11.09.02 井岗, 何俊, 陈加松, 等. 金坛盐穴储气库上限压力提高试验[J]. 西南石油大学学报(自然科学版), 2018, 40(6): 77-84. doi:10.11885/j.issn.1674-5086.2017.11.09.02 [5] QI Deshan, LI Shuping, WANG Yuangang. Characteristics of cavity differential dissolution of Jintan salt cave gas reservoir[J]. Journl of Southwest Petroleum University (Science & Technology Edition), 2019, 41(2): 75-83. doi:10.11885/j.issn.1674-5086.2018.04.19.02 齐得山, 李淑平, 王元刚. 金坛盐穴储气库腔体偏溶特征分析[J]. 西南石油大学学报(自然科学版), 2019, 41(2): 75-83. doi:10.11885/j.issn.1674-5086.2018.04.19.02 [6] LIU Tuanhui, GUO Fajun, ZHANG Hui, et al. Evaluation of subsurface gas reservoir reconstruction by aquifer structure: Taking Permian water-cut sandstone in central Hebei Depression as an example[J]. Reservoir Evaluation and Development, 2017, 7(2): 13-22. doi:10.3969/j.issn.2095-1426.2017.02.003 刘团辉, 郭发军, 张辉, 等. 含水层构造改建地下储气库储层评价研究—以冀中坳陷大5井区二叠系砂岩为例[J]. 油气藏评价与开发, 2017, 7(2): 13-22. doi:10.3969/j.issn.2095-1426.2017.02.003 [7] WANG Juanjuan, YAO Huajian, WANG Weitao, et al. Study of the near-surface velocity structure of the Hutubi gas storage area in Xinjiang from ambient noise tomography[J]. Chinese Journal of Geophysics, 2018, 61(11): 4436-4447. doi:10.6038/cjg2018M0025 王娟娟, 姚华建, 王伟涛, 等. 基于背景噪声成像方法的新疆呼图壁储气库地区近地表速度结构研究[J]. 地球物理学报, 2018, 61(11): 4436-4447. doi:10.6038/cjg2018M0025 [8] DING Guosheng, LI Chun, WANG Jieming, et al. The status quo and technical development direction of underground gas storages in China[J]. Natural Gas Industry, 2015, 35(11): 107-112. doi:10.3787/j.issn.1000-0976.2015.11.017 丁国生, 李春, 王皆明, 等. 中国地下储气库现状及技术发展方向[J]. 天然气工业, 2015, 35(11): 107-112. doi:10.3787/j.issn.1000-0976.2015.11.017 [9] TANG Ligen, WANG Jieming, DING Guosheng, et al. Downhole inflow-performance forecast for underground gas storage based on gas reservoir development data[J]. Petroleum Exploration and Development, 2016, 43(1): 127-130. doi:10.11698/PED.2016.01.16 唐立根, 王皆明, 丁国生, 等. 基于开发资料预测气藏改建储气库后井底流入动态[J]. 石油勘探与开发, 2016, 43(1): 127-130. doi:10.11698/PED.2016.01.16 [10] WANG Dijin, LI Yu, NIE Zhaosheng, et al. Study on the cap rock deformation of Hutubi underground gas storage by GPS[J]. Earthquake Research in China, 2016, 32(2): 397-406. doi:10.3969/j.issn.1001-4683.2016.02.023 王迪晋, 李瑜, 聂兆生, 等. 呼图壁地下储气库地表盖层变形的GPS研究[J]. 中国地震, 2016, 32(2): 397-406. doi:10.3969/j.issn.1001-4683.2016.02.023 [11] LI Jie, LI Rui, WANG Xiaoqiang, et al. Research on surface vertical deformation in the Hutubi underground gas storage reservoir[J]. Earthquake Research in China, 2016, 32(2): 407-416. doi:10.3969/j.issn.1001-4683.2016.02.024 李杰, 李瑞, 王晓强, 等. 呼图壁地下储气库部分区域地表垂直形变机理研究[J]. 中国地震, 2016, 32(2): 407-416. doi:10.3969/j.issn.1001-4683.2016.02.024 [12] AHMED R, SIQUEIRA P, HENSLEY S, et al. A survey of temporal decorrelation from spaceborne L-band repeat-pass InSAR[J]. Remote Sensing of Environment, 2011, 115(11): 2887-2896. doi:10.1016/j.rse.2010.03.017 [13] AO Meng, ZHANG Qin, ZHAO Chaoying, et al. An improved CR-InSAR technology used for deformation monitoring in Jiaju Landslide, Sichuan[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3): 377-383. doi:10.13203/j.whugis20140797 敖萌, 张勤, 赵超英, 等. 改进的CR-InSAR技术用于四川甲居滑坡形变监测[J]. 武汉大学学报(信息科学版), 2017, 42(3): 377-383. doi:10.13203/j.whugis20140797 [14] JI Lingyun, WANG Qingliang, CUI Duxin, et al. Time series of deformation in Tengchong volcanic area extracted by SBAS-DInSAR[J]. Journal of Geodesy & Geodynamics, 2011, 31(4): 149-153. doi:10.3969/j.issn.1671-5942.2011.04.034 季灵运, 王庆良, 崔笃信, 等. 利用SBAS-DInSAR技术提取腾冲火山区形变时间序列[J]. 大地测量与地球动力学, 2011, 31(4): 149-153. doi:10.3969/j.issn.1671-5942.2011.04.034 [15] JUNG J, KIM D J. Mitigation of atmospheric phase delay effects in SAR interferometry for volcanic activity monotoring using MODIS data and WRF model[C]. Munich, Germany: IEEE International Geoscience and Remote Sensing Symposium, 2012. [16] YANG Y H, HU J C, CHEN Q, et al. A blind thrust and overlying folding earthquake of the 2016 Mw 6.0 Hutubi earthquake in the northern Tien Shan Mountain fold-and-thrust belts, China[J]. Bulletin of the Seismological Society of America, 2019, 109(2): 2659-2668. doi:10.1785/0120180150 [17] YANG Y H, TSAI M C, HU J C, et al. Coseismic slip deficit of the 2017 MW 6.5 Ormoc Earthquake that occurred along a creeping segment and geothermal field of the Philippine Fault[J]. Geophysical Research Letters, 2018, 45(6): 2659-2668. doi:10.1002/2017GL076417 [18] FERRETTI A, SAVIO G, BARZAGHI R, et al. Submillimeter accuracy of InSAR time series: Experimental validation[J]. IEEE Transactions on Geoscience & Remote Sensing, 2007, 45(5): 1142-1153. [19] CASU F, MANZO M, LANARI F. A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data[J]. Remote Sensing of Environment, 2006, 102(3-4): 195-210. [20] ZHU Jianjun, LI Zhiwei, HU Jun. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1717-1733. doi:10.11947/j.-AGCS.2017.20170350 朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10): 1717-1733. doi:10.11947/j.-AGCS.2017.20170350 [21] ZHU Bangyan, CHU Zhengwei, SHEN Fei, et al. Land subsidence (2004—2013) in Changzhou in Central Yangtze River delta revealed by MT-InSAR[J]. Natural Hazards, 2019, 97(6): 379-394. doi:10.1007/s11069-019-03650-z [22] ZHANG Yadi, LI Yudong, DONG Jie, et al. Landslide hazard detection in Markam with time-series InSAR analyses[J]. Journal of Remote Sensing, 2019, 23(5): 987-996. doi:10.11834/jrs.2019025 张亚迪, 李煜东, 董杰, 等. 时序InSAR技术探测芒康地区滑坡灾害隐患[J]. 遥感学报, 2019, 23(5): 987-996. doi:10.11834/jrs.2019025 [23] KARIMZADEH S, CAKIR Z, OSMANOGLU B, et al. Interseismic strain accumulation across the North Tabriz Fault (NW Iran) deduced from InSAR time series[J]. Journal of Geodynamics, 2013, 66: 53-58. doi:10.1016/j.jog.2013.02.003 [24] CHENG Haiqin, CHEN Qiang, LIU Guoxiang, et al. Post-earthquake landslides distribution along Longmenshan major fault during rainy season with short-baseline InSAR[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(9): 931-938. doi:10.13485/j.cnki.11-2089.2014.0161 程海琴, 陈强, 刘国祥, 等. 短基线InSAR探测龙门山主断裂带两侧震后雨期的滑坡空间分布特征[J]. 测绘学报, 2014, 43(9): 931-938. doi:10.13485/j.cnki.11-2089.2014.0161 [25] BERARDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience & Remote Sensing, 2003, 40(11): 2375-2383. doi:10.1109/TGRS.2002.803792 [26] LIU Pei, WU Kai, XU Yi, et al. Multi-scale accuracy evaluation of TRMM precipitation data in mainland China[J]. Advances in Science and Technology of Water Resources, 2018, 38(3): 42-47. doi:10.3880/j.issn.1006-7647.2018.03.008 刘培, 吴凯, 许怡, 等. 中国大陆TRMM降水多尺度精度评价[J]. 水利水电科技进展, 2018, 38(3): 42-47. doi:10.3880/j.issn.1006-7647.2018.03.008 [27] TAKAKU J, TADONO T. Quality updates of 'AW3D' global DSM generated from ALOS PRISM[C]. Fort Worth, Texas: IEEE International Geoscience and Remote Sensing Symposium, 2017. doi: 10.1109/IGARSS.2017.8128293 [28] GOLDSTEIN R M, WERNER C L. Radar interferogram filtering for geophysical applications[J]. Geophysical Research Letters, 1998, 25(21): 4035-4038. [29] COSTANTINI M. A novel phase unwrapping method based on network programing[J]. IEEE Transaction on Geoscience and Remote Sensing, 1998, 36(3): 813-821. |