[1] 何登发,李德生. 塔里木盆地构造演化与油气聚集[M]. 北京:地质出版社, 1996. HE Dengfa, LI Desheng. Tectonic evolution and oilgas accumulation in Tarim Basin[M]. Beijing: Geological Publishing House, 1996. [2] 邹才能,杨智,张国生,等. 常规非常规油气“有序聚集”理论认识及实践意义[J]. 石油勘探与开发, 2014, 41(1):14-25. doi: 10.11698/PED.2014.01.02 ZOU Caineng, YANG Zhi, ZHANG Guosheng, et al. Conventional and unconventional petroleum “orderly accumulation”: Concept and practical significance[J]. Petroleum Exploration and Development, 2014, 41(1): 14–25. doi: 10.11698/PED.2014.01.02 [3] LIANG Digang, ZHANG Shuichang, CHEN Jianping, et al. Organic geochemistry of oil and gas in the Kuqa Depression, Tarim Basin, NW China[J]. Organic Geochemistry, 2003, 34(7): 873–888. doi: 10.1016/S0146-6380(03)00029-9 [4] THOMPSON K F. Gas-condensate migration and oil fractionation in deltaic systems[J]. Marine and Petroleum Geology, 1988, 5(3): 237–246. [5] LU Xuesong, ZHAO Mengjun, LIU Keyu, et al. Formation condition of deep gas reservoirs in tight sandstones in Kuqa Foreland Basin[J]. Petroleum Research, 2018, 3(4): 346–358. doi: 10.1016/j.ptlrs.2018.-11.-003 [6] 邹才能,潘松圻,党刘栓. 论能源革命与科技使命[J]. 西南石油大学学报(自然科学版), 2019, 41(3):1-12. doi: 10.11885/j.issn.1674-5086.2019.04.07.01 ZOU Caineng, PAN Songqi, DANG Liushuan. On the energy revolution and the mission of science and technology[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2019, 41(3): 1–12. doi: 10.11885/j.issn.1674-5086.2019.04.07.01 [7] 贾承造,郑民,张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2):129-136. JIA Chengzao, ZHENG Min, ZHANG Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2): 129–136. [8] 邹才能,张国生,杨智,等. 非常规油气概念、特征、潜力及技术——兼论非常规油气地质学[J]. 石油勘探与开发,2013,40(4):385-399. doi:10.11698/PED.2013.04.01 ZOU Caineng, ZHANG Guosheng, YANG Zhi, et al. Geological concepts, characteristics, resource potential and key techniques of unconventional hydrocarbon: On unconventional petroleum geology[J]. Petroleum Exploration and Development, 2013, 40(4): 385–399. doi: 10.11698/PED.2013.04.01 [9] 姚泾利,邓秀芹,赵彦德,等. 鄂尔多斯盆地延长组致密油特征[J]. 石油勘探与开发, 2013, 40(2):150-158. doi: 10.11698/PED.2013.02.03 YAO Jingli, DENG Xiuqin, ZHAO Yande, et al. Characteristics of tight oil in Triassic Yanchang Formation, Ordos Basin[J]. Petroleum Exploration and Development, 2013, 40(2): 150–158. doi: 10.11698/PED.2013.02.03 [10] 童晓光. 非常规油的成因和分布[J]. 石油学报, 2012, 33(S1):20-26. doi: 10.7623/syxb2012S1004 TONG Xiaoguang. Genesis and distribution of unconventional oil[J]. Acta Petrolei Sinica, 2012, 33(S1): 20–26. doi: 10.7623/syxb2012S1004 [11] 郑民,王文广,李鹏,等. Dodsland油田致密油成藏特征及关键参数研究[J]. 西南石油大学学报(自然科学版), 2017, 39(1):53-62. doi: 10.11885/j.issn.1674-5086.2015.10.22.03 ZHENG Min, WANG Wenguang, LI Peng, et al. The key parameters and reservoir-forming characteristic of tight oil of Dodsland Field Viking Formation[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2017, 39(1): 53–62. doi: 10.11885/j.issn.1674-5086.2015.10.22.03 [12] 邹才能,朱如凯,吴松涛,等. 常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例[J]. 石油学报, 2012, 33(2):173-187. ZOU Caineng, ZHU Rukai, WU Songtao, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: Taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012, 33(2): 173–187. [13] 李建忠,郑民,陈晓明,等. 非常规油气内涵辨析、 源储组合类型及中国非常规油气发展潜力[J]. 石油学报,2015,36(5):521-532. doi:10.7623/syxb2015-05001 LI Jianzhong, ZHENG Min, CHEN Xiaoming, et al. Connotation analuses, sourse-reservoir assemblage types and development potential of unconventional hydrocarbon in China[J]. Acta Petrolei Sinica, 2015, 36(5): 521–532. doi: 10.7623/syxb201505001 [14] HERRON M M, RD O Q. Estimating the intrinsic permeability of clastic sediments from geochemical data[C]. London: SWPLA 28th Annual Symposium, 1987. [15] 黄文辉,敖卫华,肖秀玲,等. 鄂尔多斯盆地侏罗纪含煤岩系生烃潜力评价[J]. 煤炭学报, 2011, 36(3):461-467. doi: 10.13225/j.cnki.jccs.2011.03.003 HUANG Wenhui, AO Weihua, XIAO Xiuling, et al. The assesment of the capacity for producing hadrocarbon in the Jurrasic coal and associate rocks in Ordos Basin[J]. Journal of China Coal Society, 2011, 36(3): 461–467. doi: 10.13225/j.cnki.jccs.2011.03.003 [16] 胡慧婷,卢双舫,刘超,等. 测井资料计算烃源岩有机碳含量模型对比及分析[J]. 沉积学报, 2011, 29(6):1199-1205. doi: 10.14027/j.cnki.cjxb.2011.06.012 HU Huiting, LU Shuangfang, LIU Chao, et al. Models for calculating organic carbon content from logging information: Comparison and analysis[J]. Acta Sedimentologica Sinica, 2011, 29(6): 1199–1205. doi: 10.14027/j.cnki.cjxb.2011.06.012 [17] 苏俊磊,孙建孟,苑吉波,等. 基于核磁共振孔隙结构的产能评价[J]. 西安石油大学学报(自然科学版), 2011, 26(3):43-47. doi: 10.3969/j.issn.1673-064X.2011.03.008 SU Junlei, SUN Jianmeng, YUAN Jibo, et al. Reservoir productivity evaluation based on NMR pore structure[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2011, 26(3): 43–47. doi: 10.3969/j.issn.1673-064X.2011.03.008 [18] 邹才能,杨智,陶士振,等. 纳米油气与源储共生型油气聚集[J]. 石油勘探与开发, 2012, 39(1):13-26. ZOU Caineng, YANG Zhi, TAO Shizhen, et al. Nanohydrocarbon and the accumulation in coexisting source and reservoir[J]. Petroleum Exploration and Development, 2012, 39(1): 13–26. [19] 袁龙,王谦,虞兵,等. 致密气藏烃源岩地化参数测井综合评价方法研究[J]. 地球物理学进展, 2020, 35(1):239-249. doi: 10.6038/pg2020cc0562 YUAN Long, WANG Qian, YU Bing, et al. Well logging evaluation method research of source rock geochemical parameters in the tight gas[J]. Progress in Geophysics, 2020, 35(1): 239–249. doi: 10.6038/pg2020cc0562 [20] 郝建飞,周灿灿,李霞,等. 页岩气地球物理测井评价综述[J]. 地球物理学进展, 2012, 27(4):1624-1632. doi: 10.6038/j.issn.1004-2903.2012.04.040 HAO Jianfei, ZHOU Cancan, LI Xia, et al. Summary of shale gas evaluation applying geophysical logging[J]. Progress in Geophysics, 2012, 27(4): 1624–1632. doi: 10.6038/j.issn.1004-2903.2012.04.040 [21] 高岗,王绪龙,柳广弟,等. 准噶尔盆地上三叠统源岩TOC含量预测方法[J]. 高校地质学报, 2012, 18(4):745-750. doi: 10.16108/j.issn1006-7493.2012.04.004 GAO Gang, WANG Xulong, LIU Guangdi, et al. Prediction method and of organic carbon abundance of dark color mudstones in the Triassic system in Junggar Basin[J]. Geological Journals of China Universities, 2012, 18(4): 745–750. doi: 10.16108/j.issn1006-7493.2012.04.004 [22] 袁俊亮,邓金根,张定宇,等. 页岩气储层可压裂性评价技术[J]. 石油学报, 2013, 34(3):523-527. doi: 10.7623/syxb201303015 YUAN Junliang, DENG Jingen, ZHANG Dingyu, et al. Fracturing evaluation technology of shale-gas reservoirs[J]. Acta Petrolei Sinica, 2013, 34(3): 523–527. doi: 10.7623/syxb201303015 [23] 李庆辉,陈勉,金衍,等. 页岩脆性的室内评价方法及改进[J]. 岩石力学与工程学报, 2012, 31(8):1680-1685. LI Qinghui, CHEN Mian, JIN Yan, et al. Indoor evaluation method for shale brittleness and improvement[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(8): 1680–1685. [24] 霍玉雁,岳喜洲,孙建孟. 测井资料在压裂设计中的应用[J]. 测井技术, 2008, 32(5):446-450. doi: 10.3969/j.issn.1004-1338.2008.05.014 HUO Yuyan, YUE Xizhou, SUN Jianmeng. Application of logging data in fracturing design[J]. Well Logging Technology, 2008, 32(5): 446–450. doi: 10.3969/j.issn.1004-1338.2008.05.014 [25] WHITTAKER B N, SINGH R N, SUN G. Rock fracture mechanics: Principles, design and applications[M]. Amsterdam: Elsecier Science Ltd., 1992. [26] AUTRIC A, DUMCSNIL P. Resistivity radioactivity and sonic transit time logs to evaluate the organic content of low permeability rocks[J]. Society of Petrophysicists and Well-Log Analysts, 1985, 26(3): 37–45. [27] ZOU Caineng, YANG Zhi, ZHU Rukai, et al. Geologic significance and optimization technique of sweet spots in unconventional shale systems[J]. Journal of Asian Earth Sciences, 2019, 112: 3–19. doi: 10.1016/j.jseaes.2018.07.005 |