[1] 吴奇,梁兴,鲜成钢,等. 地质-工程一体化高效开发中国南方海相页岩气[J]. 中国石油勘探,2015,20(4):1-23. doi:10.3969/j.issn.1672-7703.2015.04.001 WU Qi, LIANG Xing, XIAN Chenggang, et al. Geoscienceto-production integration ensures effective and efficient South China marine shale gas development[J]. China Petroleum Exploration, 2015, 20(4):1-23. doi:10.3969/j.issn.1672-7703.2015.04.001 [2] 胡文瑞. 地质工程一体化是实现复杂油气藏效益勘探开发的必由之路[J]. 中国石油勘探,2017,22(1):1-5. doi:10.3969/j.issn.1672-7703.2017.01.001 HU Wenrui. Geology-engineering integration——A necessary way to realize profitable exploration and development of complex reservoirs[J]. China Petroleum Exploration, 2017, 22(1):1-5. doi:10.3969/j.issn.1672-7703.2017.01.001 [3] 谢军,张浩淼,佘朝毅,等. 地质工程一体化在长宁国家级页岩气示范区中的实践[J]. 中国石油勘探,2017,22(1):21-28. doi:10.3969/j.issn.1672-7703.2017.01.004 XIE Jun, ZHANG Haomiao, SHE Chaoyi, et al. Practice of geology-engineering integration in Changning state shale gas demonstration area[J]. China Petroleum Exploration, 2017, 22(1):21-28. doi:10.3969/j.issn.1672-7703.2017.01.004 [4] 何佑伟,程时清,胡利民,等. 多段压裂水平井不均匀产油试井模型[J]. 中国石油大学学报(自然科学版),2017,41(4):116-123. doi:10.3969/j.issn.1673-5005.2017.04.015 HE Youwei, CHENG Shiqing, HU Limin, et al. A pressure transient analysis model of multi-fractured horizontal well in consideration of unequal production of each fracture[J]. Journal of China University of Petroleum(Edition of Natural Science), 2017, 41(4):116-123. doi:10.3969/j.issn.1673-5005.2017.04.015 [5] 方全堂,李政澜,段永刚,等. 考虑次生裂缝的页岩气藏有限导流缝网模型[J]. 西南石油大学学报(自然科学版),2019,41(6):139-145. doi:10.11885/j.issn.1674-5086.2019.09.17.06 FANG Quantang, LI Zhenglan, DUAN Yonggang, et al. The finite-conductivity fracture networks model in shale gas reservoirs with consideration of induced fractures[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2019, 41(6):139-145. doi:10.11885/j.issn.1674-5086.2019.09.17.06 [6] 魏明强,段永刚,方全堂,等. 基于物质平衡修正的页岩气藏压裂水平井产量递减分析方法[J]. 石油学报,2016,37(4):508-515. doi:10.7623/syxb201604010 WEI Mingqiang, DUAN Yonggang, FANG Quantang, et al. Production decline analysis method of fractured horizontal well in shale gas reservoirs based on modifying material balance[J]. Acta Petrolei Sinica, 2016, 37(4):508-515. doi:10.7623/syxb201604010 [7] 吕心瑞. 基于控制体积方法的离散裂缝网络模型流动模拟研究[D]. 青岛:中国石油大学(华东),2010. L$\ddot{\rm U}$ Xinrui. Study on flow simulation of discrete fracture network model based on control volume method[D]. Qingdao:China University of Petroleum, 2010. [8] 何佑伟,贺质越,汤勇,等. 基于机器学习的页岩气井产量评价与预测[J]. 石油钻采工艺,2021,43(4):518-524. doi:10.13639/j.odpt.2021.04.016 HE Youwei, HE Zhiyue, TANG Yong, et al. Shale gas well production evaluation and prediction based on machine learning[J]. Oil Drilling & Production Technology, 2021, 43(4):518-524. doi:10.13639/j.odpt.2021.04.016 [9] 李宁. 裂缝性油藏油水相渗曲线实验研究[D]. 成都:西南石油大学,2015. LI Ning. Experimental study on oil-water relative permeability curve of fractured reservoir[D]. Chengdu:Southwest Petroleum University, 2015. [10] 李威,李伟,闫正和,等. 考虑相渗时变的数值模拟历史拟合方法及应用[J]. 天然气与石油,2021,39(1):67-73. doi:10.3969/j.issn.1006-5539.2021.01.011 LI Wei, LI Wei, YAN Zhenghe, et al. Numerical simulation historical matching method and its application considering the relative permeability time-dependent[J]. Oil& Gas Exploration and Development, 2021, 39(1):67-73. doi:10.3969/j.issn.1006-5539.2021.01.011 [11] 王东琪,殷代印,周亚洲. 特低渗透微裂缝发育油藏综合相渗曲线计算方法[J]. 油气藏评价与开发,2017,7(5):20-25. doi:10.3969/j.issn.2095-1426.2017.05.005 WANG Dongqi, YIN Daiyin, ZHOU Yazhou. Calculation method of comprehensive relative permeability curve for ultra-low permeability reservoir with fracture-developed[J]. Reservoir Evaluation and Development, 2017, 7(5):20-25. doi:10.3969/j.issn.2095-1426.2017.05.005 [12] 唐子春,王朝,张子珂,等. 非常规油气藏体积压裂数值模拟新进展[J]. 石油地质与工程,2017,31(3):108-113. doi:10.3969/j.issn.1673-8217.2017.03.029 TANG Zichun, WANG Chao, ZHANG Zike, et al. New progress on numerical simulation of volume fracturing in unconventional oil reservoirs[J]. Petroleum Geology and Engineering, 2017, 31(3):108-113. doi:10.3969/j.issn.1673-8217.2017.03.029 [13] 鲜成钢. 页岩气地质工程一体化建模及数值模拟:现状、挑战和机遇[J]. 石油科技论坛,2018,37(5):24-34. doi:10.3969/j.issn.1002-302x.2018.05.005 XUAN Chenggang. Shale gas geological engineering integrated modeling and numerical simulation:Present conditions, challenges and opportunities[J]. Petroleum Technology Forum, 2018, 37(5):24-34. doi:10.3969/j.issn.1002-302x.2018.05.005 [14] 魏赫鑫. 致密气储层相渗曲线形态及渗透率瓶颈区表征研究[D]. 北京:中国地质大学(北京),2021. WEI Hexin. Study on the morphology of tight gas reservoir gas-water relative permeability curve and the characterization of permeability jail[D]. Beijing:China University of Geosciences, 2021. [15] KRESSE O, WENG X, WU R, et al. Numerical modeling of hdyraulic fractures interaction in complex naturally fractuted formations[J]. Rock Mechanics and Rock Engineering, 2013, 46(3):555-568. doi:10.1007/s00603-012-0359-2 [16] MAHSANAM M, CRAIG L C. A workflow for modeling and simulation of hydraulic fractures in unconventional gas reservoirs[C]. SPE 153022-MS, 2012. doi:10.2118/153022-MS [17] SUAREZ R R, HERRING S, HANDWERGER D, et al. Integrated analysis of core geology, rock properties, well logs, and seismic data provides a well constrained geologic model of the Bossier/Haynesville system[C]. SPE 167204-MS, 2013. doi:10.2118/167204-MS [18] SUAREZ R R, DAHL G V, BORGOS H G, et al. Seismic-based heterogeneous earth model improves mapping reservoir quality and completion quality in tight shales[C]. SPE 164544-MS, 2013. doi:10.2118/164544-MS [19] BOMMER P, BAYNE M, MAYERHOFER M, et al. Re-designing from scratch and defending offset wells:Case study of a six-well Bakken zipper project, McKenzie County, ND[C]. SPE 184851-MS, 2017. doi:10.2118/184851-MS [20] ALGARHY A, SOLIMAN M, HEINZE L, et al. Increasing hydrocarbon recovery from shale reservoirs through balloonedhydraulic fracturing[C]. URTEC 2687030, 2017. doi:10.15530/urtec-2017-2687030 [21] XU Tao, LINDSAY G, BAIHLY J, et al. Proposed refracturing methodology in the Haynesville shale[C]. SPE 187236-MS, 2017. doi:10.2118/187236-MS |