[1] RAJAGOPAL R, JOSHI S. Productivity of multiple drianholes or fractured horizontal wells[J]. SPE Formation Evaluation, 1993, 8(1):11-16. doi:10.2118/21263-PA [2] 郎兆新, 张丽华, 程林松.压裂水平井产能研究[J].石油大学学报(自然科学版), 1994, 18(2):43-46. LANG Zhaoxin, ZHANG Lihua, CHENG Linsong. Investigation on pkodectivity of fractured horizontal well[J]. Journal of the University of Petroleum, China, 1994, 18(2):43-46. [3] 孙福街, 韩树刚, 程林松, 等.低渗气藏压裂水平井渗流与井筒管流耦合模型[J].西南石油学院学报, 2005, 27(1):32-37. doi:10.3863/j.issn.1000-2634.2005.01.009 SUN Fujie, HAN Shugang, CHENG Linsong, et al. Coupling models between fractured horizontal well fluid flow of low permeabilty gas reservoir and wellbore pipe flow[J]. Journal of Southwest Petroleum Institute, 2005, 27(1):32-37. doi:10.3863/j.issn.1000-2634.2005.01.009 [4] GUO Boyun, YU Xiance. A simple and accurate mathematical model for predicting productivity of multifractured horizontal wells[C]. SPE 114452-MS, 2008. doi:10.2118/114452-MS [5] 杨兆中, 陈倩, 李小刚, 等.致密气藏分段多簇压裂水平井产能计算新方法[J].大庆石油地质与开发, 2019, 38(1):147-154. doi:10.19597/J.ISSN.1000-3754.201806064 YANG Zhaozhong, CHEN Qian, LI Xiaogang, et al. A new method for calculating the productivity of the staged multi-bunch fractured horizontal well in tight gas reservoirs[J]. Petroleum Geology & Oilfield Development in Daqing, 2019, 38(1):147-154. doi:10.19597/J.ISSN.1000-3754.201806064 [6] WU Y, GEORGE M, BAI B, et al. A multi-continuum modrl for gas production in tight fracture reservoirs[C]. SPE 118944-MS, 2009. doi:10.2118/118944-MS [7] CIPOLLA C L, LOLON E P. Reservoir modeling and production evaluation in shale gas reservoirs[C]. IPTC 13185-MS, 2009. doi:10.2523/IPTC-13185-MS [8] CIPOLLA C L, LOLON E P, MAYERHOFER M J, et al. Fracture design consideration in horizontal wells drilled in unconventional gas reservoirs[C]. SPE 119366-MS, 2009. doi:10.2118/119366-MS [9] 张烈辉, 刘沙, 雍锐, 等.基于EDFM的致密油藏分段压裂水平井数值模拟[J].西南石油大学学报(自然科学版), 2019, 41(4):1-11. doi:10.11885/j.issn.1674-5086.2018.11.21.05 ZHANG Liehui, LIU Sha, YONG Rui, et al. EDFM-based numerical simulation of horizontal wells with multi-stage hydraulic fracturing in tight reservoirs[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2019, 41(4):1-11. doi:10.11885/j.issn.1674-5086.2018.11.21.05 [10] NEJAD M, SHELUDKO S, HODGSON T, et al. A case history:Evaluating well completions in the Eagle Ford Shale using a data-driven approach[C]. SPE 173336-MS, 2015. doi:10.2118/173336-MS [11] SHELLEY R, NEJAD A, GULIYEV N, et al. Understanding multi-fractured horizontal Marcellus completions[C]. SPE 171003-MS, 2014. doi:10.2118/171003-MS [12] 檀朝东, 贺甲元, 周彤, 等.基于PCA-BNN的页岩气压裂施工参数优化[J].西南石油大学学报(自然科学版), 2020, 42(6):56-62. doi:10.11885/j.issn.1674-5086.2020.05.12.05 TAN Chaodong, HE Jiayuan, ZHOU Tong, et al. A study on the optimization of fracturing operation parameters based on PCA-BNN[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2020, 42(6):56-62. doi:10.11885/j.issn.1674-5086.2020.05.12.05 [13] WANG Shuhua, CHEN Shengnan. Insights to fracture stimulation design in unconventional reservoirs based on machine learning modeling[J]. Journal of Petroleum Science and Engineering, 2018, 174(2):22-45. doi:10.1016/j.petrol.2018.11.076 [14] CLAR H, MONACO A. Data-driven approach to optimize stimulation design in Eagle Ford Formation[C]. URTEC 2019-224-MS, 2019. doi:10.15530/urtec-2019-224 [15] LUNDBERG S M, LEE S I. A unified approach to interpreting model predictions[C]. Long Beach:31st Conference on Neural Information Processing Systems, 2017. doi:10.48550/arXiv.1705.07874 [16] 孔钦, 叶长青, 孙赟.大数据下数据预处理方法研究[J].计算机技术与发展, 2018, 28(5):1-4. doi:10.3969/j.issn.1673-629X.2018.05.001 KONG Qin, YE Changqing, SUN Yun. Research on data preprocessing methods for big data[J]. Computer Technology and Development, 2018, 28(5):1-4. doi:10.3969/j.issn.1673-629X.2018.05.001 [17] 周志华.机器学习[M].北京:清华大学出版社, 2016. ZHOU Zhihua. Machine learning[M]. Beijing:Tsinghua University Press, 2016. [18] 纪守领, 李进锋, 杜天宇.机器学习模型可解释性方法、应用与安全研究综述[J].计算机研究与发展, 2019, 56(10):2071-2096. doi:10.7544/issn1000-1239.2019.20190540 JI Shouling, LI Jinfeng, DU Tianyu. Survey on techniques, applications and security of machine learning interpretability[J]. Journal of Computer Research and Development, 2019, 56(10):2071-2096. doi:10.7544/issn1000-1239.2019.20190540 [19] MOLNAR C. Interpretable machine learning[M/OL].[2022-03-29]. https://christophm.github.io/interpretable-ml-book, 2022. [20] GUIDOTTI R, MONREALE A, RUGGIERI S, et al. A survey of methods for explaining black box models[J]. ACM Computing Surveys, 2018, 51(5):93-100. doi:10.1145/3236009 [21] BAEHRENS D, SCHROETER T, HARMELING S, et al. How to explain individual classification decisions[J]. Journal of Machine Learning Research, 2010, 11(6):1803-1831. doi:10.1007/s10846-009-9348-4 [22] 冯德成, 吴刚.混凝土结构基本性能的可解释机器学习建模[J].建筑结构学报, 2022, 43(4):228-238. doi:10.14006/j.jzjgxb.2020.0491 FENG Decheng, WU Gang. Interpretable machine learning-based modeling approach for fundamental properties of concrete structures[J]. Journal of Building Structures, 2022, 43(4):228-238. doi:10.14006/j.jzjgxb.2020.0491 |