[1] 李汉勇,高航,秦守强,等.含水稠油在纳米-微波协同下的降黏实验研究[J].西南石油大学学报(自然科学版),2020,42(5):179-186. doi:10.11885/j.issn.1674-5086.2019.07.12.01 LI Hanyong, GAO Hang, QIN Shouqiang, et al. An experimental study on viscosity reduction of water-cut heavy oil under the synergistic action of nano catalyst and microwave[J]. Journal of Southwest Petroleum University (Science&Technology Edition), 2020, 42(5):179-186. doi:10.11885/j.issn.1674-5086.2019.07.12.01 [2] HASSON D, MANN V, NIR A. Annular flow of two immiscible liquids I mechanisms[J]. The Canadian Journal of Chemical Engineering, 1970, 48(5):514-520. doi:10.1002/cjce.5450480507 [3] VANEGAS P J W, BANNWART A C. Modeling of vertical core-annular flows and application to heavy oil production[J]. Journal of Energy Resources Technology, 2001, 123(3):194-199. doi:10.1115/1.1377894 [4] BENSAKHRIA A, PEYSSON Y, ANTONINI G. Experimental study of the pipeline lubrication of heavy oil transport[J]. Oil&Gas Science and Technology, 2004, 59(5):523-533. doi:10.2516/ogst:2004037 [5] 蒋文明,杜仕林,刘杨,等.新型稠油水环发生器维稳特性与结构优化研究[J].湖南大学学报(自然科学版),2018,45(8):86-90. doi:10.16339/j.cnki.hdxbzkb.2018.08.012 JIANG Wenming, DU Shilin, LIU Yang, et al. Study on stability characteristics and structural optimization of a new type of core-annular flow generator with high viscosity oil[J]. Journal of Hunan University (Natural Sciences), 2018, 45(8):86-90. doi:10.16339/j.cnki.hdxbzkb.2018.08.012 [6] JING Jiaqiang, YIN Xiaoyun, MASTOBAEV B N, et al. Experimental study on highly viscous oil-water annular flow in a horizontal pipe with 90° elbow[J]. International Journal of Multiphase Flow, 2021, 135:1-10. doi:10.1016/j.ijmultiphaseflow.2020.103499 [7] SHI Jing, AL-AWADI H, YEUNG H. An experimental investigation of high-viscosity oil-water flow in a horizontal pipe[J]. The Canadian Journal of Chemical Engineering, 2017, 95(12):2423-2434. doi:10.1002/cjce.22903 [8] 吴君强,蒋文明,杜仕林,等.水平管路水环输送稠油减阻模拟实验[J].化工学报,2019,70(5):1734-1741. doi:10.11949/j.issn.0438-1157.20181285 WU Junqiang, JIANG Wenming, DU Shilin, et al. Experiment on drag reduction of heavy oil in horizontal pipeline by water annular conveying[J]. CIESC Journal, 2019, 70(5):1734-1741. doi:10.11949/j.issn.0438-1157.20181285 [9] HERRERA J R, MENA B, ROMO C A, et al. Lubricated pipe transport of heavy crude oils[J]. Petroleum Science and Technology, 2009, 27(13):1466-1479. doi:10.1080/10916460802637262 [10] HU Haili, JING Jiaqiang, TAN Jiatong, et al. Flow patterns and pressure gradient correlation for oil-water core-annular flow in horizontal pipes[J]. Experimental and Computational Multiphase Flow, 2020, 2(2):99-108. doi:10.1007/s42757-019-0041-y [11] ARNEY M S, BAI R, GUEVARA E, et al. Friction factor and holdup studies for lubricated pipelining I:Experiments and correlations[J]. International Journal of Multiphase Flow, 1993, 19(6):1061-1076. doi:10.1016/0301-9322(93)90078-9 [12] BANNWART A C. Modeling aspects of oil-water core-annular flows[J]. Journal of Petroleum Science&Engineering, 2001, 32(2-4):127-143. doi:10.1016/S09204105(01)00155-3 [13] ASIEGUBU P C, ASAKURA K. Experimental study on pressure loss of horizontal core-annular flow[J]. Journal of Solid Mechanics and Materials Engineering, 2008, 2(6):831-841. doi:10.1299/jmmp.2.831 [14] LIVINUS A, YEUNG H, LAO Liyun. Restart time correlation for core annular flow in pipeline lubrication of high-viscous oil[J]. Journal of Petroleum Exploration&Production Technology, 2017, 7(1):293-302. doi:10.1007/s13202-016-0241-y [15] POESIO P, STRAZZA D. Experiments on start-up of an oil-water core annular flow through a horizontal or nearly horizontal pipe[C]. Edinburgh:13th International Conference on Multiphase Production Technology, 2007. [16] PEYSSON Y, BENSAKHRIA A, ANTONINI G, et al. Pipeline lubrication of heavy oil:Experimental investigation of flow and restart problems[J]. SPE Production and Operations, 2007, 22(1):135-140. doi:10.2118/97764-PA [17] STRAZZA D, POESIO P. Experimental study on the restart of core-annular flow[J]. Chemical Engineering Research and Design, 2012, 90(11):1711-1718. doi:10.1016/j.cherd.2012.03.011 [18] 江帆,卢浩然,黎斯杰,等.管阀内油水环状流稳定性的流固耦合分析[J].西安石油大学学报(自然科学版),2020,35(1):97-103. doi:10.3969/j.issn.1673-064X.2020.01.014 JIANG Fan, LU Haoran, LI Sijie, et al. Stability analysis of oil-water annular flow in tube valve under fluid-solid coupling[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2020, 35(1):97-103. doi:10.3969/j.issn.1673-064X.2020.01.014 [19] JING Jiaqiang, DU Mingjun, YIN Ran, et al. Numerical study on two-phase flow characteristics of heavy oil-water ring transport boundary layer[J]. Journal of Petroleum Science&Engineering, 2020, 191:1-11. doi:10.1016/j.petrol.2020.107173 [20] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1):201-225. doi:10.1016/0021-9991(81)90145-5 [21] 李业,敬加强,代科敏,等.基于FLUENT的黏稠油垂直上升水环输送数值模拟[J].油气储运,2014,33(2):205-210. doi:10.6047/j.issn.1000-8241.2014.02.017 LI Ye, JING Jiaqiang, DAI Kemin, et al. Numerical simulation of vertical upward water annulurs transportation of heavy oil based on FLUENT[J]. Oil&Gas Storage and Transportation, 2014, 33(2):205-210. doi:10.6047/j.issn.1000-8241.2014.02.017 [22] 姜俊泽,雍岐卫,钱海兵,等.气液两相管流相界面检测及数值模拟研究进展[J].西南石油大学学报(自然科学版),2021,43(2):138-148. doi:10.11885/j.issn.1674-5086.2020.03.05.02 JIANG Junze, YONG Qiwei, QIAN Haibing, et al. Advances in the interface detection of gas-liquid two-phase pipe-flow research[J]. Journal of Southwest Petroleum University (Science&Technology Edition), 2021, 43(2):138-148. doi:10.11885/j.issn.1674-5086.2020.03.05.02 [23] SHI Jing, GOURMA M, YEUNG H. CFD simulation of horizontal oil-water flow with matched density and medium viscosity ratio in different flow regimes[J]. Journal of Petroleum Science and Engineering, 2017, 151:373-383. doi:10.1016/j.petrol.2017.01.022 [24] BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2):335-354. doi:10.1016/0021-9991(92)90240-Y [25] 马文鑫,李岩,申龙涉,等.超稠油水膜面减阻输送技术的数值模拟[J].辽宁石油化工大学学报,2011,31(3):38-41. doi:10.3696/j.issn.1672-6952.2011.03.011 MA Wenxin, LI Yan, SHEN Longshe, et al. Numerical simulation of water film drag reduction transport of super heavy oil[J]. Journal of Liaoning Shihua University, 2011, 31(3):38-41. doi:10.3696/j.issn.1672-6952.2011.03.011 [26] 敬加强,尹晓云,MASTOBAEV B N,等. T形管内雾状气液两相流相分离特性研究[J].石油机械,2021,49(9):122-128. doi:10.16082/j.cnki.issn.10014578.2021.09.018 JING Jiaqiang, YIN Xiaoyun, MASTOBAEV B N, et al. Study on phase separation characteristics of gas-liquid mist flow in T-pipe[J]. China Petroleum Machinery, 2021, 49(9):122-128. doi:10.16082/j.cnki.issn.1001-4578.2021.09.018 [27] 蒋文明,杜仕林,吴君强,等.稠油水环发生器结构优化[J].油气储运,2019,38(8):937-943. doi:10.6047/j.issn.1000-8241.2019.08.015 JIANG Wenming, DU Shilin, WU Junqiang, et al. Structural optimization of core-annular flow generator for the heavy oil transportation[J]. Oil&Gas Storage and Transportation, 2019, 38(8):937-943. doi:10.6047/j.issn.1000-8241.2019.08.015 [28] GHOSH S, DAS G, DAS P K. Simulation of core annular in return bends:A comprehensive CFD study[J]. Chemical Engineering Research&Design, 2011, 89(11):2244-2253. doi:10.1016/j.cherd.2011.03.015 [29] JIANG Fan, WANG Yijun, OU Jiajie, et al. Numerical simulation on oil-water annular flow through the П bend[J]. Industrial&Engineering Chemistry Research, 2014, 53(19):8235-8244. doi:10.1021/ie403394s [30] 敬加强,尹晓云,MASTOBAEV B N,等.水平管内水环输送模拟稠油减阻特性[J].化工进展,2021,40(2):635-641. doi:10.16085/j.issn.1000-6613.2020-0674 JING Jiaqiang, YIN Xiaoyun, MASTOBAEV B N, et al. Drag reduction characteristics of water annulus transportation of simulated heavy oil in horizontal pipeline[J]. Chemical Industry and Engineering Progress, 2021, 40(2):635-641. doi:10.16085/j.issn.1000-6613.2020-0674 [31] WU Junqiang, JIANG Wenming, LIU Yang, et al. Study on hydrodynamic characteristics of oil-water annular flow in 90° elbow[J]. Chemical Engineering Research and Design, 2020, 153(8):443-451. doi:10.1016/j.cherd.2019.11.013 [32] 贺成才.偏心环状管流的数值模拟[J].西南石油学院学报,2003,25(1):77-79. doi:10.3863/j.issn.1674-5086.2003.01.023 HE Chengcai. Numerical simulation of eccentric annular tube flow[J]. Journal of Southwest Petroleum Institute, 2003, 25(1):77-79. doi:10.3863/j.issn.1674-5086.2003.01.023 |