[1] 周尚文,郭和坤,薛华庆.特低渗油藏水驱剩余可动油分布特征实验研究[J].西安石油大学学报(自然科学版),2015,30(2):65-68. doi:10.3969/j.issn.1673-064X.2015.02.012 ZHOU Shangwen, GUO Hekun, XUE Huaqing. Experimental research of remaining movable oil in ultra-low permeability reservoir after water flooding[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2015, 30(2):65-68. doi:10.3969/j.issn.1673-064X.2015.02.012 [2] 王玉普,刘义坤,邓庆军.中国陆相砂岩油田特高含水期开发现状及对策[J].东北石油大学学报, 2014, 38(1):1-9. doi:10.3969/j.issn.2095-4107.2014.01.001 WANG Yupu, LIU Yikun, DENG Qingjun. Current situation and development strategy of the extra high water cut stage of continental facies sandstone oil fields in China[J]. Journal of Northeast Petroleum University, 2014, 38(1):1-9. doi:10.3969/j.issn.2095-4107.2014.01.001 [3] 袁自学,王靖云,李淑珣,等.特低渗透注水砂岩油藏采收率确定方法[J].石油勘探与开发, 2014, 41(3):341-348. doi:10.11698/PED.2014.03.10 YUAN Zixue, WANG Jingyun, LI Shuxun, et al. A new approach to estimating recovery factor for extra-low permeability water-flooding sandstone reservoir[J]. Petroleum Exploration and Development, 2014, 41(3):341-348. doi:10.11698/PED.2014.03.10 [4] 田巍. CO2驱提高采收率方法在深层低渗透油藏的应用——以中原油田胡96块油藏为例[J].石油地质与工程, 2020, 34(4):50-54. doi:10.3969/j.issn.1673-8217.2020.04.010 TIAN Wei. Application of CO2-EOR in the deep low permeability reservoir By taking Hu 96 Block of Zhongyuan Oilfield as an example[J]. Petroleum Geology and Engineering, 2020, 34(4):50-54. doi:10.3969/j.issn.1673-8217.2020.04.010 [5] 史云清,贾英,潘伟义,等.致密低渗透气藏注CO2提高采收率潜力评价[J].天然气工业, 2017, 37(3):62-69. doi:10.3787/j.issn.1000-0976.2017.03.008 SHI Yunqing, JIA Ying, PAN Weiyi, et al. Potential evaluation on CO2-EGR in tight and low-permeability reservoirs[J]. Natural Gas Industry, 2017, 37(3):62-69. doi:10.3787/j.issn.1000-0976.2017.03.008 [6] 高嘉.油藏二氧化碳驱提高采收率及埋存技术[J].中国石油石化, 2017(5):29-30. GAO Jia. Enhanced oil recovery and storage technology of carbon dioxide flooding in reservoirs[J]. China Petrochem, 2017(5):29-30. [7] 关振良,谢丛姣,齐冉,等.二氧化碳驱提高石油采收率数值模拟研究[J].天然气工业, 2007, 27(4):142-144. doi:10.3321/j.issn:1000-0976.2007.04.045 GUAN Zhenliang, XIE Congjiao, QI Ran, et al. Numerical simulation study on enhancing recovery factor by CO2 displacement[J]. Natural Gas Industry, 2007, 27(4):142-144. doi:10.3321/j.issn:1000-0976.2007.04.045 [8] 孙扬,杜志敏,孙雷,等. CO2的埋存与提高天然气采收率的相行为[J].天然气工业, 2012, 32(5):39-42. doi:10.3787/j.issn.1000-0976.2012.05.010 SUN Yang, DU Zhimin, SUN Lei, et al. Phase behavior of CO2 sequestration and the enhanced natural gas recovery[J]. Natural Gas Industry, 2012, 32(5):39-42. doi:10.3787/j.issn.1000-0976.2012.05.010 [9] 张守仁,桑树勋,吴见,等. CO2驱煤层气关键技术研发及应用[J].煤炭学报,2022,47(11):3952-3964. doi:10.13225/j.cnki.jccs.L022.1185 ZHANG Shouren, SANG Shuxun, WU Jian, et al. Progress and application of key technologies for CO2 enhancing coalbed methane[J]. Journal of Coal Science, 2022, 47(11):3952-3964. doi:10.13225/j.cnki.jccs.L022.1185 [10] 黎雪莲,欧阳传湘. CO2驱不同阶段采出气分离工艺模拟及回注效果评价[J].科学技术与工程,2020,20(12):4687-4694. doi:10.3969/j.issn.1671-1815.2020.12.011 LI Xuelian, OUYANG Chuanxiang. Simulation on separation process of produced gas in different stages of CO2 flooding and evaluation of reinjection effect[J]. Science Technology and Engineering, 2020, 20(12):4687-4694. doi:10.3969/j.issn.1671-1815.2020.12.011 [11] 胡永乐,郝明强,陈国利,等.中国CO2驱油与埋存技术及实践[J].石油勘探与开发, 2019, 46(4):716-727. doi:10.11698/PED.2019.04.10 HU Yongle, HAO Mingqiang, CHEN Guoli, et al. Technologies and practice of CO2 flooding and sequestration in China[J]. Petroleum Exploration and Development, 2019, 46(4):716-727. doi:10.11698/PED.2019.04.10 [12] 戴海林,于景化,张相兵,等.天然气处理厂脱除油田伴生气中CO2技术分析与应用[J].现代化工, 2013, 33(4):103-105. doi:10.3969/j.issn.0253-4320.2013.04.025 DAI Hailin, YU Jinghua, ZHANG Xiangbing, et al. Analysis and application of CO2 removal technology of oilfield associated gas in natural gas processing plant[J]. Modern Chemical Industry, 2013, 33(4):103-105. doi:10.3969/j.issn.0253-4320.2013.04.025 [13] 王海琴,范明龙,张足斌,等.基于双产品回收的CO2驱采伴生气低温分馏工艺[J].低温工程, 2017(4):21-28, 67. WANG Haiqin, FAN Minglong, ZHANG Zubin, et al. Cryogenic distillation processes aimed to recover dual products from CO2 EOR associated gas[J]. Cryogenics, 2017(4):21-28, 67. [14] 曾文平,王晓琴,王伟杰.天然气在线气相色谱仪校准规范的制定[J].石油与天然气化工, 2017, 46(3):99-103. doi:10.3969/j.issn.1007-3426.2017.03.020 ZENG Wenping, WANG Xiaoqin, WANG Weijie. Making calibration specification of on-line gas chromatograph for natural gas[J]. Oil&Gas Chemistry, 2017, 46(3):99-103. doi:10.3969/j.issn.1007-3426.2017.03.020 [15] 罗勤.天然气能量计量在我国应用的可行性与实践[J].天然气工业, 2014, 34(2):123-129. doi:10.3787/j.issn.1000-0976.2014.02.020 LUO Qin. Practicability and application of natural gas energy determination in China[J]. Natural Gas Industry, 2014, 34(2):123-129. doi:10.3787/j.issn.1000-0976.2014.02.020 [16] 冯红年,徐虎,任焱,等.天然气在线气相色谱仪的研制[J].石油与天然气化工, 2014(2):192-195, 199. doi:10.3969/j.issn.1007-3426.2014.02.018 FENG Hongnian, XU Hu, REN Yan, et al. Development of on-line GC analyzer for natural gas[J]. Chemical Engineering of Oil&Gas, 2014(2):192-195, 199. doi:10.3969/j.issn.1007-3426.2014.02.018 [17] 王冠培,苏清博,郭开华,等.多气源混输管网的供气方案[J].油气储运, 2013, 32(10):1063-1067. doi:10.6047/j.issn.1000-8241.2013.10.006 WANG Guanpei, SU Qingbo, GUO Kaihua, et al. Gas supply program for pipeline network with multiple gas sources[J]. Oil & Gas Storage and Transportation, 2013, 32(10):1063-1067. doi:10.6047/j.issn.1000-8241.2013.10.006 [18] 吴华丽,孙石磊.多气源混输管网下的供气方案[J].管道技术与设备, 2011(5):54-56. doi:10.3969/j.issn.1004-9614.2011.05.020 WU Huali, SUN Shilei. Gas supply projects for gas grid with multiple gases as source[J]. Pipeline Technology and Equipment, 2011(5):54-56. doi:10.3969/j.issn.1004-9614.2011.05.020 [19] 闫文灿,裴全斌,夏宝丁,等.多气源混输管道在线气相色谱仪安装位置的确定方法[J].天然气工业, 2017, 37(10):87-92. doi:10.3787/j.issn.1000-0976.2017.10.012 YAN Wencan, PEI Quanbin, XIA Baoding, et al. A method for determining the installation location of an on-line gas chromatograph in the mixed transportation pipelines with multiple sources[J]. Natural Gas Industry, 2017, 37(10):87-92. doi:10.3787/j.issn.1000-0976.2017.10.012 [20] 冯亮.多气源混输管道均匀混气距离研究[J].辽宁化工, 2019, 48(2):157-159. doi:10.3969/j.issn.1004-0935.2019.02.018 FENG Liang. Study on uniform mixing distance of multigas-source mixed pipeline[J]. Liaoning Chemical Industry, 2019, 48(2):157-159. doi:10.3969/j.issn.1004-0935.2019.02.018 [21] 冯亮.多气源管道混输工况用户端气质变化模拟[J].煤气与热力, 2019, 39(5):40-42. FENG Liang. Simulation of gas quality change at user end under mixed transmission condition of multi-gas source pipeline[J]. Gas & Heat, 2019, 39(5):40-42. [22] 王冠培,郭开华,潘国君.基于CFD的天然气管道混气扩散规律研究[J].热科学与技术, 2015, 14(6):484-491. doi:10.13738/j.issn.1671-8097.2015.06.008 WANG Guanpei, GUO Kaihua, PAN Guojun. Research on natural gas pipeline mixing-flow properties based on computational fluid dynamics[J]. Journal of Thermal Science and Technology, 2015, 14(6):484-491. doi:10.13738/j.issn.1671-8097.2015.06.008 [23] 周宁,任福平,陈兵,等.风速对综合管廊天然气管舱泄漏扩散影响的数值模拟[J].天然气化工(C1化学与化工),2020,45(2):100-105. doi:10.3969/j.issn.1001-9219.2020.02.019 ZHOU Ning, REN Fuping, CHEN Bing, et al. Numerical simulation of wind speed effect on leakage and diffusion in gas cabin of utility tunnel[J]. Natural Gas Chemical Industry (C1 Chemistry and Chemical Industry), 2020, 45(2):100-105. doi:10.3969/j.issn.1001-9219.2020.02.019 [24] 郭波,胡德栋,单文砚,等.高精度混合器内气体湍流扩散过程的CFD数值模拟[J].计量技术, 2014(10):3-5, 9. doi:10.3969/j.issn.1000-0771.2014.10.01 GUO Bo, HU Dedong, SHAN Wenyan, et al. CFD numerical simulation of turbulent diffusion process in high precision mixer[J]. Metrology Technology, 2014(10):3-5, 9. doi:10.3969/j.issn.1000-0771.2014.10.01 [25] 赵海亚.气相色谱仪在天然气组分测量中的应用[J].石油化工自动化, 2018, 54(5):76-78. ZHAO Haiya. Application of gas chromatogragh in natural gas components measurement[J]. Automation in PetroChemical Industry, 2018, 54(5):76-78. |