[1] 蒋廷学,卞晓冰,王海涛,等. 深层页岩气水平井体积压裂技术[J]. 天然气工业, 2017, 37(1):90-96. doi:10.3787/j.issn.1000-0976.2017.01.011 JIANG Tingxue, BIAN Xiaobing, WANG Haitao, et al. Volume fracturing of deep shale gas horizontal wells[J]. Natural Gas Industry, 2017, 37(1):90-96. doi:10.3787/j.issn.1000-0976.2017.01.011 [2] 何文渊,蒙启安,冯子辉,等. 松辽盆地古龙页岩油原位成藏理论认识及勘探开发实践[J]. 石油学报, 2022, 43(1):1-14. doi:10.7623/syxb202201001 HE Wenyuan, MENG Qi'an, FENG Zihui, et al. In-situ accumulation theory and exploration & development practice of Gulong shale oil in Songliao Basin[J]. Acta Petrolei Sinica, 2022, 43(1):1-14. doi:10.7623/syxb202201001 [3] 张军义,贾光亮. 影响鄂尔多斯盆地致密砂岩储层水力压裂效果关键因素分析[J]. 非常规油气, 2024, 11(3):114-119. doi:10.19901/j.fcgyq.2024.03.14 ZHANG Junyi, JIA Guangliang. Analysis of key factors affecting fracturing effect in tight sandstone reservoir[J]. Unconventional Oil & Gas, 2024, 11(3):114-119. doi:10.19901/j.fcgyq.2024.03.14 [4] 熊颖. 国内外页岩气压裂液技术现状与发展趋势[J]. 世界石油工业, 2023, 30(4):63-72. doi:10.20114/j.issn.1006-0030.20230705003 XIONG Ying. Current situation and development trend of fracturing fluid technology for shale gas at home and abroad[J]. World Petroleum Industry, 2023, 30(4):63-72. doi:10.20114/j.issn.1006-0030.20230705003 [5] 翁定为,魏然,孙强,等. 水力压裂裂缝监测技术综 述[J]. 世界 石油 工业, 2024, 31(6):66-76. doi:10.20114/j.issn.1006-0030.20240430001 WENG Dingwei, WEI Ran, SUN Qiang, et al. Review on fracturing monitoring technology[J]. World Petroleum Industry, 2024, 31(6):66-76. doi:10.20114/j.issn.1006-0030.20240430001 [6] 郭建春,张宇,曾凡辉,等. 非常规油气储层智能压裂技术研究进展与展望[J]. 天然气工业, 2024, 44(9):13-26. doi:10.3787/j.issn.1000-0976.2024.09.002 GUO Jianchun, ZHANG Yu, ZENG Fanhui, et al. Research progress and prospects of intelligent fracturing technology for unconventional reservoirs[J]. Natural Gas Industry, 2024, 44(9):13-26. doi:10.3787/j.issn.1000- 0976.2024.09.002 [7] 贾承造,王祖纲,姜林,等. 中国油气勘探开发成就与未来潜力:深层、深水与非常规油气专访中国科学院院士、石油地质与构造地质学家贾承造[J]. 世界石油工业, 2023, 30(3):1-8. doi:10.20114/j.issn.1006-0030.20230626001 JIA Chengzao, WANG Zugang, JIANG Lin, et al. Achievements and future potential for oil & gas exploration and development in China:deep-formation, deepwater and unconventional reservoirs-Interview with JIA Chengzao, Academician of the CAS, geologist in petroleum geology and structure[J]. World Petroleum Industry, 2023, 30(3):1-8.10.20114/j.issn.1006-0030.202306-26001 [8] EVANS S, HOLLEY E, DAWSON K, et al. Eagle Ford case history:Evaluation of diversion techniques to increase stimulation effectiveness[C]. San Antonio:Unconventional Resources Technology Conference, 2016. doi:10.15530/URTEC-2016-2459883 [9] CRAMER D, FRIEHAUF K, ROBERTS G, et al. Integrating DAS, treatment pressure analysis and videobased perforation imaging to evaluate limited entry treatment effectiveness[C]. SPE 194334-MS, 2019. doi:10.2118/194334-MS [10] MILLER C, WATERS G, RYLANDER E. Evaluation of production log data from horizontal wells drilled in organic shales[C]. SPE 144326-MS, 2011. doi:10.2118/144326-MS [11] 赵金洲,陈曦宇,李勇明,等. 水平井分段多簇压裂模拟分析及射孔优化[J]. 石油勘探与开发, 2017, 44(1):117-124. doi:10.11698/PED.2017.01.14 ZHAO Jinzhou, CHEN Xiyu, LI Yongming, et al. Numerical simulation of multi-stage fracturing and optimization of perforation in a horizontal well[J]. Petroleum Exploration and Development, 2017, 44(1):117-124. doi:10.11698/PED.2017.01.14 [12] 赵金洲,陈曦宇,刘长宇,等. 水平井分段多簇压裂缝间干扰影响分析[J]. 天然气地球科学, 2015, 26(3):533-538. doi:10.11764/j.issn.1672-1926.2015.03.0533 ZHAO Jinzhou, CHEN Xiyu, LIU Changyu, et al. The analysis of crack interaction in multi-stage horizontal fracturing[J]. Natural Gas Geoscience, 2015, 26(3):533-538. doi:10.11764/j.issn.1672-1926.2015.03.0533 [13] CHEN Ming, ZHANG Shicheng, ZHOU Tong, et al. Optimization of in-stage diversion to promote multiple uniform fracture growth:A numerical study[J]. SPE Journal, 202025(6):3091-3110. doi:10.2118/201114-PA [14] 金衍,程万,陈勉. 页岩气储层压裂数值模拟技术研 究进 展[J]. 力学 与实 践, 2016, 38(1):1-9. doi:10.6052/1000-0879-15-225 JIN Yan, CHENG Wan, CHEN Mian. A review of numerical simulations of hydro-fracking in shale gas reservoir[J]. Mechanics in Engineering, 2016, 38(1):1-9. doi:10.6052/1000-0879-15-225 [15] 姚军,王萌,樊冬艳,等. 考虑层理缝岩性差异的页岩油藏压裂水平井动态分析方法[J]. 中国石油大学学报(自然科学版), 2024, 48(5):91-102. doi:10.3969/j.issn.1673-5005.2024.05.010 YAO Jun, WANG Meng, FAN Dongyan, et al. Dynamic analysis of fractured horizontal wells in shale reservoirs considering lithological differences of bedding fractures[J]. Journal of China University of Petroleum (Edition of Natural Science), 2024, 48(5):91-102. doi:10.3969/j.issn.1673-5005.2024.05.010 [16] 齐银,薛小佳,戴彩丽,等. 页岩油储层前置CO2压裂返排提高原油动用机理——以长庆油田为例[J]. 西安石油大学学报(自然科学版), 2025, 40(1):32-38. doi:10.3969/j.issn.1673-064X.2025.01.004 QI Yin, XUE Xiaojia, DAI Caili, et al. Study on mechanism of improving recovery of shale oil by preposed CO2 fracturing:Taking Changqing Oilfield as an example[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2025, 40(1):32-38. 10.3969/j.issn.1673- 064X.2025.01.004 [17] 王卫刚,张军涛,高志亮,等. 银额盆地哈日凹陷异常高压储层测试压裂的探究与实践[J]. 西安石油大学学报(自然科学版), 2024, 39(2):39-46. doi:10.3969/j.issn.1673-064X.2024.02.005 WANG Weigang, ZHANG Juntao, GAO Zhiliang, et al. Exploration and practice of test fracturing technology for abnormal high pressure reservoir in Hari Sag, YingenEjinaqi Basin[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2024, 39(2):39-46. doi:10.3969/j.issn.1673-064X.2024.02.005 [18] 陈曦宇. 水平井分段多簇压裂多裂缝非均匀扩展现象数值模拟研究[D]. 成都:西南石油大学, 2018. CHEN Xiyu. Numerical investigation of nonuniform fracture growth in multistage hydraulic fracturing[D]. Chengdu:Southwest Petroleum University, 2018. [19] SOMANCHI K, BREWER J, REYNOLDS A. Extreme limited-entry design improves distribution efficiency in plug-and-perforate completions:Insights from fiberoptic diagnostics[J]. SPE 184834-PA, 2018. doi:10.2118/184834-PA [20] UGUETO G A, HUCKABEE P T, MOLENAAR M M, et al. Perforation cluster efficiency of cemented plug and perf limited entry completions; insights from fiber optics diagnostics[C]. SPE 179124-MS, 2016. doi:10.2118/179124- MS [21] GUO Tiankui, ZHANG Shicheng, QU Zhanqing, et al. Experimental study of hydraulic fracturing for shale by stimulated reservoir volume[J]. Fuel, 2014, 128:373-380. doi:10.1016/j.fuel.2014.03.029 [22] GUO Tiankui, TANG Songjun, LIU Shun, et al. Physical simulation of hydraulic fracturing of large-sized tight sandstone outcrops[J]. SPE Journal, 2021, 26(1):372-393. doi:10.2118/204210-PA [23] WU Shan, GAO Ke, WANG, XIAOQIONG, et al. Investigating the propagation of multiple hydraulic fractures in shale oil rocks using acoustic emission[J]. Rock Mechanic & Rock Engineering 2022, 55:6015-6032. [24] ZOU Yushi, GAO Budong, ZHANG Shicheng, et al. Multi-fracture nonuniform initiation and vertical propagation behavior in thin interbedded tight sandstone:An experimental study[J]. Journal of Petroleum Science and Engineering, 2022, 213:110417. doi:10.1016/j.petrol.2022.110417 [25] 张啸寰,张士诚,邹雨时,等. 冲击压裂技术促进页岩油储层缝高扩展的可行性[J]. 中国石油大学学报(自然科学版), 2024, 48(6):105-113. doi:10.3969/j.issn.1673- 5005.2024.06.011 ZHANG Xiaohuan, ZHANG Shicheng, ZOU Yushi, et al. Feasibility of pressure shock fracturing to improve fracture height growth in shale oil formation[J]. Journal of China University of Petroleum (Edition of Natural Science), 2024, 48(6):105-113. doi:10.3969/j.issn.1673- 5005.2024.06.011 [26] 齐宁, 甘俊冲,章泽辉,等. 径向井辅助前置液酸压裂缝扩展数值模拟[J]. 中国石油大学学报(自然科学版), 2024, 48(3):101-110. doi:10.3969/j.issn.1673- 5005.2024.03.011 QI Ning, GAN Junchong, ZHANG Zehui, et al. Numerical simulation of fracture propagation guided by radial well assisted preflush acid fracturing[J]. Journal of China University of Petroleum (Edition of Natural Science), 2024, 48(3):101-110. doi:10.3969/j.issn.1673-5005.2024.03.011 [27] 张士诚,陈铭,马新仿,等. 水力压裂设计模型研究进展与发展方向[J]. 新疆石油天然气, 2021, 17(3):67-73. doi:10.3969/j.issn.1673-2677.2021.03.012 ZHANG Shicheng, CHEN Ming, MA Xinfang, et al. Research progress and development direction of hydrofracturing design models[J]. Xinjiang Oil & Gas, 2021, 17(3):67-73. doi:10.3969/j.issn.1673-2677.2021.03.012 [28] ADACHI J, SIEBRITS E, ANTHONY P P, et al. Computer simulation of hydraulic fractures[J]. International Journal of Rock Mechanics & Mining Sciences, 2007, 44:739-757. doi:10.1016/j.ijrmms.2006.11.006 [29] CHENG C, BUNGER A P, PEIREC A P. Optimal perforation location and limited entry design for promoting simultaneous growth of multiple hydraulic fractures[C]. SPE 179158-MS, 2016. doi:10.2118/179158-MS [30] WANG Yunpeng, GUO Tiankui, CHEN Ming, et al. Numerical study on simultaneous propagation of multiple fractures:A method to design nonuniform perforation and in-stage diversion[J]. SPE Journal, 2023, 28(5):2514-2533. 10.2118/214696-PA [31] YANG Zhaozhong, YI Liangping, LI Xiaogang, et al. Pseudo-three-dimensional numerical model and investigation of multi-cluster fracturing within a stage in a horizontal well[J]. Journal of Petroleum Science and Engineering, 2018, 162:190-213. [32] SESETTY V, GHASSEMI A. Evaluating the effect of formation properties and completion design parameters on cluster efficiency using advanced modeling[C]. Houston:The SPE/AAPG/SEG Unconventional Resources Technology Conference, 2021. doi:10.15530/urtec-2021-5290 [33] LECAMPION B, DESROCHES J. Simultaneous initiation and growth of multiple radial hydraulic fractures from a horizontal wellbore[J]. Journal of the Mechanics and Physics of Solids, 2015, 82:235-258. [34] 胡东风,任岚,李真祥,等. 深层超深层页岩气水平井缝口暂堵压裂的裂缝调控模拟[J]. 天然气工业, 2022, 42(2):50-58. doi:10.3787/j.issn.1000-0976.2022.02.006 HU Dongfeng, REN Lan, LI Zhenxiang, et al. Simulation of fracture control during temporary plugging at fracture openings in deep and ultra-deep shale-gas horizontal wells[J]. Natural Gas Industry, 2022, 42(2):50-58. doi:10.3787/j.issn.1000-0976.2022.02.006 [35] 刘合,匡立春,李国欣,等. 中国陆相页岩油完井方式优选的思考与建议[J]. 石油学报, 2020, 41(4):489-496. doi:10.7623/syxb202004011 LIU He, KUANG Lichun, LI Guoxin, et al. Considerations and suggestions on optimizing completion methods of continental shale oil in China[J]. Acta Petrolei Sinica, 2020, 41(4):489-496. doi:10.7623/syxb202004011 [36] UGUETO G A, WOJTASZEK M, HUCKABEE P T, et al. An integrated view of hydraulic induced fracture geometry in hydraulic fracture test site 2[C]. Houston:The SPE/AAPG/SEG Unconventional Resources Technology Conference, 2021. doi:10.15530/urtec-2021-5396 [37] GORDELIY E D. A fixed grid algorithm for simulating the propagation of a shallow hydraulic fracture with a fluid lag[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32:189-213. doi:10.1002/nag.913 [38] CROUCH S L, STARFIELD A M. Boundary element methods in solid mechanics[M]. London:George Allen and Unwin, 1983. [39] LECAMPION B, ZIA H. Slickwater hydraulic fracture propagation:Near-tip and radial geometry solutions[J]. Journal of Fluid Mechanics, 2019, 880:514-550. [40] CRUMP J B, CONWAY M W. Effects of perforationentry friction on bottom hole treating analysis[J]. Journal of Petroleum Technology, 1988, 40(8):1041-1048. [41] CHURCHILL S. Friction-factor equation spans all fluidflow regimes[J]. Chemical Engineering, 1977, 84(24):91-92. [42] OLSON J E. Fracture mechanics analysis of joints and veins[D]. Stanford:Stanford University, 1991. [43] 陈铭. 水平井分段多簇压裂多裂缝竞争扩展数值模拟研究[D]. 北京:中国石油大学(北京), 2022. doi:10.27643/d.cnki.gsybu.2020.000123 CHEN Ming. Numerical simulation of multi-fracture competitive growth in multi-stage and multi-cluster fracturing of a horizontal well[D]. Beijing:China University of Petroleum, 2022. doi:10.27643/d.cnki.gsybu.2020.000123 [44] 陈铭,张士诚,胥云,等. 水平井分段压裂平面三维多裂缝扩展模型求解算法[J]. 石油勘探与开发, 2020, 47(1):163-174. CHEN Ming, ZHANG Shicheng, XU Yun, et al. A numerical method for simulating planar 3D multi-fracture propagation in multi-stage fracturing of horizontal wells[J]. Petroleum Exploration and Development, 2020, 47(1):163174. [45] CHEN Ming, ZHANG Shicheng, LI Shihai, et al. An explicit algorithm for modeling planar 3D hydraulic fracture growth based on a super-time-stepping method[J]. International Journal of Solids and Structures, 2020, 191-192:370-389. doi:10.1016/j.ijsolstr.2020.01.011 |