西南石油大学学报(自然科学版) ›› 2023, Vol. 45 ›› Issue (6): 80-94.DOI: 10.11885/j.issn.1674-5086.2022.05.04.02
杨兆中1, 杜慧龙1, 易良平1,2, 李小刚1, 苟良杰1
收稿日期:
2022-05-04
发布日期:
2024-01-06
通讯作者:
易良平,E-mail:ylpfrac@163.com
作者简介:
杨兆中,1969年生,男,汉族,四川泸州人,教授,博士研究生导师,主要从事油气田开发工程油气开采领域的教学和研究工作。E-mail:yzzycl@vip.sina.com;杜慧龙,1998年生,男,汉族,宁夏固原人,硕士,主要从事油气田开发方面的研究工作。E-mail:1243693486@qq.com;易良平,1991年生,男,汉族,四川泸州人,副研究员,博士,主要从事油气藏增产改造方面的教学与科研工作。E-mail:ylpfrac@163.com;李小刚,1981年生,男,汉族,四川仁寿人,教授,博士研究生导师,主要从事油气增产等方面的研究与教学工作。E-mail:swpuadam@126.com;苟良杰,1998年生,男,汉族,四川巴中人,博士,主要从事油气增产领域等方面研究工作。E-mail:244233843@qq.com
基金资助:
YANG Zhaozhong1, DU Huilong1, YI Liangping1,2, LI Xiaogang1, GOU Liangjie1
Received:
2022-05-04
Published:
2024-01-06
摘要: 页岩气生产实践表明,压裂作业结束后焖井能显著提高气井初期产量,但面对特定情况如何制定科学的焖井制度,缺乏对现有文献的全面回顾和总结。基于国内外学者在页岩气井焖井期间液岩相互作用对储层的改造和损害机理、模型和影响因素等方面的研究成果,总结了液岩相互作用机理和现有焖井制度,结果表明,储层条件下液岩相互作用是焖井增产的本质,液岩相互作用程度是制定焖井制度的关键。焖井期间液岩相互作用对储层兼具改造和损害作用,对储层的改造包括微裂缝的萌生扩展和气液渗吸置换;对储层的损害包括固相堵塞和压裂液侵入引起的水相圈闭,建立液岩相互作用与储层有效孔隙结构参数之间的未知桥梁是研究焖井制度的关键。针对目前制约液岩相互作用研究的跨尺度和高度非线性问题,提出了基于分子动力学的有效裂缝刻画模型和工业级人工智能页岩气井焖井优化模型。
中图分类号:
杨兆中, 杜慧龙, 易良平, 李小刚, 苟良杰. 页岩气井液岩相互作用机理与焖井制度研究进展[J]. 西南石油大学学报(自然科学版), 2023, 45(6): 80-94.
YANG Zhaozhong, DU Huilong, YI Liangping, LI Xiaogang, GOU Liangjie. Mechanisms of Fluid-rock Interaction and Systems of Soaking in Shale Gas Reservoir: A Research Review[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2023, 45(6): 80-94.
[1] 邹才能,赵群,丛连铸,等. 中国页岩气开发进展、 潜力及前景[J]. 天然气工业, 2021, 41(1):1-14. doi:10.3787/j.issn.1000-0976.2021.01.001 ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1): 1-14. doi: 10.3787/j.issn.1000-0976.2021.01.001 [2] 郭少斌,王子龙,马啸. 中国重点地区二叠系海陆过渡相页岩气勘探前景[J]. 石油实验地质, 2021, 43(3):377-385. doi:10.11781/sysydz202103377 GUO Shaobin, WANG Zilong, MA Xiao. Exploration prospect of shale gas with Permian transitional facies of some key areas in China[J].Petroleum Geology & Experiment, 2021, 43(3): 377-385. doi: 10.11781/sysydz2021-03377 [3] 张金川,史淼,王东升,等. 中国页岩气勘探领域和发展方向[J]. 天然气工业, 2021, 41(8):69-80. doi:10.3787/j.issn.1000-0976.2021.0 ZHANG Jinchaun, SHI Miao, WANG Dongsheng, et al. Fields and directions for shale gas exploration in China[J]. Natural Gas Industry, 2021, 41(8): 69-80. doi: 10.3787/j.issn.1000-0976.2021.0 [4] WALDMANN A T A, MARTINS A L, DANNENHAUER C. Understanding drill in fluid invasion into multilayer reservoirs saturated by compressible fluids[C]. SPE 144156-MS, 2011. doi: 10.2118/144156-MS [5] 樊平天,刘月田,冯辉,等. 致密油新一代驱油型滑溜水压裂液体系的研制与应用[J]. 断块油气田, 2022, 29(5):614-619. doi:10.6056/dkyqt202205007 FAN Pingtian, LIU Yuetian, FENG Hui, et al. Research and application of a new generation of oil-displacing slick water fracturing fluid system for tight oil[J]. Fault-Block Oil and Gas Field, 2022, 29(5): 614-619. doi: 10.6056/dkyqt202205007 [6] 代雅兴,钟海莲,周游,等. 几种滑溜水缔合型降阻剂的制备及性能[J]. 油田化学, 2022, 39(4):602-608. doi:10.19346/j.cnki.1000-4092.2022.04.006 DAI Yaxing, ZHONG Hailian, ZHOU You, et al. Preparation and properties of several slick-water associated drag reducers[J]. Oilfield Chemistry, 2022, 39(4): 602-608. doi: 10.19346/j.cnki.1000-4092.2022.04.006 [7] 张颖,周东魁,余维初,等. 玛湖井区低伤害滑溜水压裂液性能评价[J]. 油田化学, 2022, 39(1):28-32. doi:10.19346/j.cnki.1000-4092.2022.01.006 ZHANG Ying, ZHOU Dongkui, YU Weichu, et al. Performance evaluation of low-damage slick water fracturing fluid in Mahu well area[J]. Oilfield Chemistry, 2022, 39(1): 28-32. doi: 10.19346/j.cnki.1000-4092.2022.01.006 [8] IBRAHIM A F, IBRAHIM M, CHESTER P. Developing new soaking correlation for shale gas wells[C]. URTEC 2019-393, 2019. doi: 10.15530/urtec-2019-393 [9] YAICH E, WILLIAMS S, BOWSER A, et al. A case study: The impact of soaking on well performance in the Marcellus[C]. URTEC 2015-2154766, 2015. doi: 10.15530/urtec-2015-2154766 [10] 邹才能,董大忠,王玉满,等. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发, 2016, 43(2):166-178. doi:10.11698/PED.2016.0 ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Shale gas in China: Characteristics, challenges and prospects(II)[J]. Petroleum Exploration and Development, 2016, 43(2): 166-178. doi: 10.11698/PED.2016.0 [11] 张驰,周彤,肖佳林,等. 涪陵页岩气田加密井压裂技术的实践与认识[J]. 断块油气田, 2022, 29(6):775-779. doi:10.6056/dkyqt202206009 ZHANG Chi, ZHOU Tong, XIAO Jialin, et al. Practice and knowledge of fracturing technology for infill wells in Fuling shale gas field[J]. Fault-Block Oil and Gas Field, 2022, 29(6): 775-779. doi: 10.6056/dkyqt202206009 [12] 郭建设,周福建,胡晓玲,等. 三塘湖盆地致密油水平井增能压裂力学机理[J]. 断块油气田, 2021, 28(1):57-62. doi:10.6056/dkyqt202101010 GUO Jianshe, ZHOU Fujian, HU Xiaoling, et al. Mechanical mechanism of horizontal well energized fracturing of tight oil in Santanghu Basin[J]. Fault-Block Oil and Gas Field, 2021, 28(1): 57-62. doi: 10.6056/dkyqt202101010 [13] 傅建斌. 考虑多因素影响的致密气藏压裂井产能预测方法[J]. 断块油气田, 2021, 28(2):156-161. doi:10.6056/dkyqt202102003 FU Jianbin. Productivity prediction method of fractured wells in tight gas reservoir considering multi factors[J]. Fault-Block Oil and Gas Field, 2021, 28(2): 156-161. doi: 10.6056/dkyqt202102003 [14] 梁天成,才博,蒙传幼,等. 水力压裂支撑剂性能对导流能力的影响[J]. 断块油气田, 2021, 28(3):403-407. doi:10.6056/dkyqt202103022 LIANG Tiancheng, CAI Bo, MENG Chuanyou, et al. The effect of proppant performance of hydraulic fracturing on conductivity[J]. Fault-Block Oil and Gas Field, 2021, 28(3): 403-407. doi: 10.6056/dkyqt202103022 [15] 王兴文,何颂根,林立世,等. 威荣区块深层页岩气井体积压裂技术[J]. 断块油气田, 2021, 28(6):745-749. doi:10.6056/dkyqt202106005 WANG Xingwen, HE Songgen, LIN Lishi, et al. Volume fracturing technology of deep shale gas well in Weirong Block[J]. Fault-Block Oil and Gas Field, 2021, 28(6): 745-749. doi: 10.6056/dkyqt202106005 [16] EVELINE V F, AKKUTLU I Y, MORIDIS G J. Impact of hydraulic fracturing fluid damage on shale gas well production performance[C]. SPE 181677-MS, 2016. doi: 10.2118/181677-MS [17] ENGELDER T, CATHLES L M, BRYNDZIA L T. The fate of residual treatment water in gas shale[J]. Journal of Unconventional Oil and Gas Resources, 2014, 7: 33-48. doi: 10.1016/j.juogr.2014.03.002 [18] BLASINGAME T A. The characteristic flow behavior of low-permeability reservoir systems[C]. SPE 114168-MS, 2008. doi: 10.2118/114168-MS [19] SHAOUL J R, ZELM L F V, PATER C J D. Damage mechanisms in unconventional-gas-well stimulation—A new look at an old problem[J]. SPE Production & Operations, 2011, 26(4): 388-400. doi: 10.2118/142479-PA [20] STEGENT N, CANDLER C. Downhole microseismic mapping of more than 400 fracturing stages on a multiwell pad at the hydraulic fracturing test site (HFTS): Discussion of operational challenges and analytic results[C]. URTEC 2018-2902311, 2018. doi: 10.15530/urtec-2018-2902311 [21] 马天寿,陈平. 基于CT扫描技术研究页岩水化细观损伤特性[J]. 石油勘探与开发, 2014, 41(2):227-233. doi:10.11698/PED.2014.02.1 MA Tianshou, CHEN Ping. Study of meso-damage characteristics of shale hydration based on CT scanning technology[J]. Petroleum Exploration and Development, 2014, 41(2): 227-233. doi: 10.11698/PED.2014.02.1 [22] TAO Liang, GUO Jianchun, SHAN Jiangtao, et al. A new shut in time optimization method for multi-fractured horizontal wells in shale gas reservoirs[C]. San Francisco: 54th US Rock Mechanics/Geomechanics, 2020. [23] ZHAO Zhihong, TAO Liang, GUO Jianchun, et al. A novel wettability index and mineral content curve based shut-in time optimization approach for multi-fractured horizontal wells in shale gas reservoirs[J]. Journal of Petroleum Science and Engineering, 2022, 211: 110192. doi: 10.1016/j.petrol.2022.110192 [24] SHEN Yinghao, GE Hongkui, MENG Mianmo, et al. Effect of water imbibition on shale permeability and its influence on gas production[J]. Energy & Fuels, 2017, 31(5): 4973-4980. doi: 10.1021/acs.energyfuels.7b00338 [25] ZHOU Yang, YOU Lijun, KANG Yili, et al. Experimental study of the fracture initiation through the synergy of spontaneous imbibition and hydration of residual fracturing fluids in shale gas reservoirs[J]. Journal of Natural Gas Science and Engineering, 2022, 102: 104577. doi:10.1016/j.jngse.2022.104577 [26] ZENG Fanhui, ZHANG Qiang, GUO Jianchun, et al. Mechanisms of shale hydration and water block removal[J]. Petroleum Exploration and Development, 2021, 48(3): 752-761. doi: 10.1016/S1876-3804(21)60061-7 [27] 康毅力,杨斌,李相臣,等. 页岩水化微观作用力定量表征及工程应用[J]. 石油勘探与开发, 2017, 44(2):301-308. doi:10.11698/PED.20 KANG Yili, YANG Bin, LI Xiangchen, et al. Quantitative characterization of micro forces in shale hydration and field applications[J]. Petroleum Exploration and Development, 2017, 44(2): 301-308. doi: 10.11698/PED.20 [28] BONNELYE A, SCHUBNEL A, DAVID C, et al. Strength anisotropy of shales deformed under uppermost crustal conditions[J]. Journal of Geophysical Research Solid Earth, 2017, 122: 110-129. doi: 10.1002/2016JB013040 [29] 王欣,李德旗,姜伟,等. 覆压水化作用对页岩水力压裂缝扩展的影响[J]. 天然气工业, 2019, 39(6):81-86. doi:10.3787/j.issn.1000-0976.2019.06.009 WANG Xin, LI Deqi, JIANG Wei, et al. Influence of overburden hydration on fracture propagation of shale under three-dimensional stress[J]. Natural Gas Industry, 2019, 39(6): 81-86. doi: 10.3787/j.issn.1000-0976.2019.06.009 [30] 曾凡辉,张蔷,陈斯瑜,等. 水化作用下页岩微观孔隙结构的动态表征——以四川盆地长宁地区龙马溪组页岩为例[J]. 天然气工业, 2020, 40(10):66-75. doi:10.3787/j.issn.1000-0976.2020.10.008 ZENG Fanhui, ZHANG Qiang, CHEN Siyu, et al. Dynamic characterization of microscopic pore structures of shale under the effect of hydration: A case study of Longmaxi Formation shale in the Changning Area of the Sichuan Basin[J]. Natural Gas Industry, 2020, 40(10): 66-75. doi: 10.3787/j.issn.1000-0976.2020.10.008 [31] 杨海,石孝志,尹丛彬,等. 不同类型液体水化作用下海相页岩巴西劈裂破坏特征[J]. 天然气工业, 2020, 40(5):72-80. doi:10.3787/j.issn.1000-0976.2020.05.009 YANG Hai, SHI Xiaozhi, YIN Congbin, et al. Brazilian tensile failure characteristics of marine shale under the hydration effect of different fluids[J]. Natural Gas Industry, 2020, 40(5): 72-80. doi: 10.3787/j.issn.1000-0976.2020.05.009 [32] 任凯,葛洪魁,杨柳,等. 页岩自吸实验及其在返排分析中的应用[J]. 科学技术与工程,2015,15(30):106-109. doi:10.3969/j.issn.1671-1815.2015.30.019 REN Kai, GE Hongkui, YANG Liu, et al. Imbibition experiment of shale and its application in flowback analysis[J]. Science Technology and Engineering, 2015, 15(30): 106-109. doi: 10.3969/j.issn.1671-1815.2015.30.019 [33] 廖如刚,赵志红,李婷,等. 页岩储层吸水能力影响因素实验[J]. 天然气勘探与开发, 2019, 42(2):113-117. doi:10.12055/gaskk.issn.1673-3177.2019.02.015 LIAO Rugang, ZHAO Zhihong, LI Ting, et al. Experimental study on the factors influencing water absorption capacity of shale reservoirs[J]. Natural Gas Exploration and Development, 2019, 42(2): 113-117. doi: 10.12055/gaskk.issn.1673-3177.2019.02.015 [34] ASL T S, HABIBI A, YASSIN M R, et al. An experimental and field case study to evaluate the effects of shut-in on well performance[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109318. doi: 10.1016/j.petrol.2021.109318 [35] 姜桂芹,王国勇. 页岩气储层吸水特性及其对渗透率的影响[J]. 断块油气田, 2021, 28(4):530-534. doi:10.6056/dkyqt202104018 JIANG Guiqin, Wang Guoyong. Water absorption characteristics of shale gas reservoir and its influence on permeability[J]. Fault-Block Oil and Gas Field, 2021, 28(4): 530-534. doi: 10.6056/dkyqt202104018 [36] BERTONCELLO A, WALLACE J, BLYTON C, et al. Imbibition and water blockage in unconventional reservoirs: Well-management implications during flowback and early production[J]. SPE Reservoir Evaluation & Engineering, 2014, 17(4): 497-506. doi: 10.2118/167698-PA [37] CHENG Yueming. Impact of water dynamics in fractures on the performance of hydraulically fractured wells in gasshale reservoirs[J]. Journal of Canadian Petroleum Technology, 2012, 51(2): 143-151. doi: 10.2118/127863-PA [38] ZHANG Tao, LI Xiangfang, LI Jing, et al. Numerical investigation of the well shut-in and fracture uncertainty on fluid-loss and production performance in gas-shale reservoirs[J]. Journal of Natural Gas Science and Engineering, 2017, 46: 421-435. doi: 10.1016/j.jngse.2017.08.024 [39] JING Guicheng, CHEN Zhangxin, HU Xuejun, et al. Influence of different shut-in periods after fracturing on productivity of MFHW in Duvernay shale gas formation with high montmorillonite content[J]. Fuel, 2021: 122719. doi: 10.1016/j.fuel.2021.122719 [40] ZHOU Zhou, WEI Shiming, LU Rong, et al. Numerical study on the effects of imbibition on gas production and shut-in time optimization in woodford shale formation[J]. Energies, 2020, 13(12): 3222. doi: 10.3390/en13123222 [41] 马明伟,祝健,李嘉成,等. 吉木萨尔凹陷芦草沟组页岩油储集层渗吸规律[J]. 新疆石油地质, 2021, 42(6):702-708. doi:10.7657/XJPG20210608 MA Mingwei, ZHU Jian, LI Jiacheng, et al. Imbibition law of shale oil reservoirs in the Lucaogou Formation in Jimsar Sag[J]. Xinjiang Petroleum Geology, 2021, 42(6): 702-708. doi: 10.7657/XJPG20210608 [42] GE Hongkui, LIU Yang, SHEN Yinghao, et al. Experimental investigation of shale imbibition capacity and the factors influencing loss of hydraulic fracturing fluids[J]. Petroleum Science, 2015, 12(4): 636-650. doi: 10.1007/s12182-015-0049-2 [43] LIN Hun, ZHANG Shicheng, WANG Fei, et al. Experimental investigation on imbibition-front progression in shale based on nuclear magnetic resonance[J]. Energy & Fuels, 2016, 30(11): 9097-9105. doi: 10.1021/acs.energyfuels.6b01739 [44] WANG Fei, PAN Ziqing, ZHANG Shicheng. Modeling water leak-off behavior in hydraulically fractured gas shale under multi-mechanism dominated conditions[J]. Transport in Porous Media, 2017, 118(2): 177-200. doi: 10.1007/s11242-017-0853-9 [45] MAKHANOV K, HABIBI A, DEHGHANPOUR H, et al. Liquid uptake of gas shales: A workflow to estimate water loss during shut-in periods after fracturing operations[J]. Journal of Unconventional Oil & Gas Resources, 2014, 7(7): 22-32. doi: 10.1016/j.juogr.2014.04.001 [46] FAKCHAROENPHOL P, TORCUK M A, WALLACE J, et al. Managing shut-in time to enhance gas flow rate in hydraulic fractured shale reservoirs[C]. SPE 166098-MS, 2013. doi: 10.2118/166098-MS [47] ODUMABO S M, KARPYN Z T, LF A H. Investigation of gas flow hindrance due to fracturing fluid leakoff in low permeability sandstones[J]. Journal of Natural Gas Science & Engineering, 2014, 17: 1-12. doi: 10.1016/j.jngse.2013.12.002 [48] EVELINE V F, AKKUTLU I Y. Osmosis and clay swelling effects in gas shale formations under stress[C]. SPE 191599-MS, 2018. doi: 10.2118/191599-MS [49] WANG Fei, CHEN Qiaoyun, RUAN Yingqi. Hydrodynamic equilibrium simulation and shut-in time optimization for hydraulically fractured shale gas wells[J]. Energies, 2020, 13(4): 1-13. doi: 10.3390/en13040961 [50] POLLET J C, BURNS S J. Thermally activated crack propagation-theory[J]. International Journal of Fracture, 1977, 13(5): 667-679. [51] LAWN B R. An atomistic model of kinetic crack growth in brittle solids[J]. Journal of Materials Science, 1975, 10(3): 469-480. [52] MAUGIS D. Subcritical crack growth, surface energy, fracture toughness, stick-slip and embrittlement[J]. Journal of materials Science, 1985, 20(9): 3041-3073. [53] 韩慧芬,杨斌,彭钧亮. 压裂后焖井期间页岩吸水起裂扩展研究——以四川盆地长宁区块龙马溪组某平台井为例[J]. 天然气工业, 2019, 39(1):74-80. doi:10.3787/j.issn.1000-0976.2019.01.008 HAN Huifen, YANG Bin, PENG Junliang. Fracture initiation & propagation in shale due to imbibition during well shut-in after fracturing: A case study from one well platform in Longmaxi Fm of the Changning Block, Sichuan Basin[J]. Natural Gas Industry, 2019, 39(1): 74-80. doi: 10.3787/j.issn.1000-0976.2019.01.008 [54] 韩东旭,张炜韬,焦开拓,等. 基于嵌入式离散裂缝模型的增强型地热系统热-流-力-化耦合分析[J]. 天然气工业, 2023, 43(7):126-138. doi:10.3787/j.issn.1000-0976.2023.07.014 HAN Dongxu, ZHANG Weitao, JIAO Kaituo, et al. Analysis of thermal-hydraulic-mechanical-chemical coupling for EGS based on embedded discrete fracture model[J]. Natural Gas Industry, 2023, 43(7): 126-138. doi: 10.3787/j.issn.1000-0976.2023.07.014 [55] 游利军,谢本彬,杨建,等. 页岩气井压裂液返排对储层裂缝的损害机理[J]. 天然气工业, 2018, 38(12):61-69. doi:10.3787/j.issn.1000-0976.2018.12.007 YOU Lijun, XIE Benbin, YANG Jian, et al. Mechanism of fracture damage induced by fracturing fluid flowback in shale gas reservoirs[J]. Natural Gas Industry, 2018, 38(12): 61-69. doi: 10.3787/j.issn.1000-0976.2018.12.007 [56] WATTENBARGER R A, ALKOUH A B. New advances in shale reservoir analysis using flowback data[C]. SPE 165721-MS, 2013. doi: 10.2118/165721-MS [57] BYBEE K. Salt precipitation in gas reservoirs[J]. Journal of Petroleum Technology, 2009, 61(11): 77-79. doi: 10.2118/122140-MS [58] VANKEUREN P A N, HAKALA J A, JARVIS K, et al. Mineral reactions in shale gas reservoirs: Barite scale formation from reusing produced water as hydraulic fracturing fluid[J]. Environ-mental Science & Technology, 2017, 51(16): 9391-9402. doi: 10.1021/acs.est.7b01979 [59] 康毅力,陈强,游利军,等. 页岩气藏水相圈闭损害实验研究及控制对策——以四川盆地东部龙马溪组露头页岩为例[J]. 油气地质与采收率, 2014, 21(6):87-91. doi:10.3969/j.issn.1009-9603.2014.06.022 KANG Yili, CHEN Qiang, YOU Lijun, et al. Laboratory investigation ot water phase trapping damage in shale gas reservoir—A case of Longmaxi shale in the eastern Sichuan Basin[J]. Petroleum Geology and Recovery Efficiency, 2014, 21(6): 87-91. doi: 10.3969/j.issn.1009-9603.2014.06.022 [60] BENNION D B, THOMAS F B, MA T. Recent advances in laboratory test protocols to evaluate optimum drilling, completion and stimulation practices for low permeability gas reservoirs[C]. SPE 60324-MS, 2000. doi: 10.2118/60324-MS [61] BENNION D B, THOMAS F B, BIETZ R F. Low permeability gas reservoirs: problems, opportunities and solutions for drilling, completion, stimulation and production[C]. SPE 35577, 1996. doi: 10.2118/35577-MS [62] ELGMATI M, ZHANG H, BAI B, et al. Submicron-pore characterization of shale gas plays[C]. SPE 144050-MS, 1996. doi: 10.2118/144050-MS [63] ROYCHAUDHURI B, TSOTSIS T T, JESSEN K. An experimental investigation of spontaneous imbibition in gas shales[J]. Journal of Petroleum Science and Engineering, 2013, 111(11): 87-97. doi: 10.1016/j.petrol.2013.10.002 [64] LEE C H, KARPYN Z T. Numerical analysis of imbibition front evolution in fractured sandstone under capillary-dominated conditions[J]. Transport in Porous Media, 2012, 94(1): 359-383. doi: 10.1007/s11242-012-0009-x [65] CLARKSON C R, WILLIAMS-KOVACS J D. Modeling two-phase flowback of multifractured horizontal wells completed in shale[J]. SPE Journal, 2013, 18(4): 795-812. doi: 10.2118/162593-PA [66] LIN Hun, YANG Bing, SONG Xixiang, et al. Fracturing fluid retention in shale gas reservoir from the perspective of pore size based on nuclear magnetic resonance[J]. Journal of Hydrology, 2021, 601: 126590. doi: 10.1016/j.jhydrol.2021.126590 [67] PAGELS M, WILLBERG D M, EDELMAN E, et al. Quantifying fracturing fluid damage on reservoir rock to optimize production[C]. URTEC 2013-180, 2013. doi:10.1190/urtec2013-180 [68] LE D H, HOANG H N, MAHADEVAN J. Impact of capillary suction on fracture face skin evolution in waterblocked wells[C]. SPE 119585-MS, 2009. doi: 10.2118/119585-MS [69] WANG Ke, YE Kairui, JIANG Beijing, et al. The mechanism of gas-water extraction in micro-and nanoscale pores in shale gas reservoirs: Based on gas-water interactions[J]. Chemical Engineering Science, 2022, 248: 117259. doi: 10.1016/j.ces.2021.117259 [70] 杨旭,李皋,孟英峰,等. 低渗透气藏水锁损害定量评价模型[J]. 石油钻探技术, 2019, 47(1):101-106. doi:10.11911/syztjs.2019008 YANG Xu, LI Gao, MENG Yingfeng, et al. Quantitative evaluation model of water blocking damage in low permeability gas reservoirs[J]. Petroleum Drilling Techniques, 2019, 47(1): 101-106. doi: 10.11911/syztjs.2019008 [71] DEGHMOUM A H, TIAB D, MAZOUZI A. Relative permeability in dual-porosity porous media[C]. SPE 2000- 007, 2000. doi: 10.2118/2000-007 [72] BENNION D B, THOMAS F B, SCHULMEISTER B E, et al. A correlation of water and gas-oil relative permeability properties for various western Canadian sandstone and carbonate oil producing formations[C]. Calgary: Canadian International Petroleum Conference, 2002. doi: 10.2118/2002-066 [73] 屈亚光,巩旭,石康立,等. 页岩储层压裂液渗吸及返排机理研究进展[J]. 当代化工,2020,49(11):2532-2535. doi:10.3969/j.issn.1671-0460.2020.11.038 QU Yaguang, GONG Xu, SHI Kangli, et al. Research progress of lmbibition and backflow mechanism of fracturing fluids in shale reservoirs[J]. Contemporary Chemical Industry, 2020, 49(11): 2532-2535. doi: 10.3969/j.issn.1671-0460.2020.11.038 [74] 万永清,曹欣瑜,刘海涛,等. 三塘湖盆地芦草沟组页岩自吸特征[J]. 新疆石油地质, 2020, 41(6):666-676. doi:10.7657/XJPG20200605 WAN Yongqing, CAO Xinyu, LIU Haitao, et al. Spontaneous lmbibition characteristics of the shale in Lucaogou Formation in Santanghu Basin[J]. Xinjiang Petroleum Geology, 2020, 41(6): 666-676. doi: 10.7657/XJPG20200605 [75] 樊欣欣,任晓娟. 致密气藏压裂液伤害特征及实验影响因素分析[J]. 石油化工应用, 2017, 36(4):24-27. doi:10.3969/j.issn.1673-5285 FAN Xinxin, REN Xiaojuan. Damage characteristics of fracturing fluid in tight gas reservoir and analysis of experimental factors[J]. Petrochemical Industry Application, 2017, 36(4): 24-27. doi: 10.3969/j.issn.1673-5285 [76] YAN Qiyan, LEMANSKI C, KARPYN ZT, et al. Experimental investigation of shale gas production impairment due to fracturing fluid migration during shut-in time[J]. Journal of Natural Gas Science and Engineering, 2015, 24: 99-105. doi: 10.1016/j.jngse.2015.03.017 [77] 雷茹,任晓娟. 低渗透砂岩气藏水锁伤害方式对比实验研究[J]. 岩性油气藏, 2008, 20(3):124-127. doi:10.3969/j.issn.1673-8926.2008.03.025 LEI Ru, REN Xiaojuan. Experiment research on water locking damage in low-per mcability sand gas reservoirs[J]. Lithologic Reservoirs, 2008, 20(3): 124-127. doi: 10.3969/j.issn.1673-8926.2008.03.025 [78] BENNION D B, THOMAS F B, BIETZ R F, et al. Water and hydrocarbon phase trapping in porous media-diagnosis, prevention and treatment[J]. Journal of Canadian Petroleum Technology, 1996, 35(10): 29-36. doi: 10.2118/96-10-02 [79] DAVIS B B J, WOOD W D. Maximizing economic return by minimizing or preventing aqueous phase trapping during completion and stimulation operations[C]. SPE 90170-MS, 2004. doi: 10.2118/90170-MS [80] YOU Lijun, KANG Yili. Integrated evaluation of water phase trapping damage potential in tight gas reservoirs[C]. SPE 122034-MS, 2009. doi: 10.2118/122034-MS [81] SABOORIAN-JOOYBARI H, POURAFSHARY P. Potential severity of phase trapping in petroleum reservoirs: An analytical approach to prediction[J]. SPE Journal, 2017, 22(3): 863-874. doi: 10.2118/183631-PA [82] 游利军,王飞,康毅力,等. 页岩气藏水相损害评价与尺度性[J]. 天然气地球科学,2016,27(11):2023-2029. doi:10.11764/j.issn.1672-1926.2016.11.2023 YOU Lijun, WANG Fei, KANG Yili, et al. Evaluation and scale effect of aqeous phase damage in shale gas reservoir[J]. Natural Gas Geoscience, 2016, 27(11): 2023-2029. doi: 10.11764/j.issn.1672-1926.2016.11.2023 [83] BOSTROM N, CHERTOV M, PAGELS M, et al. The time-dependent permeability damage caused by fracture fluid[C]. SPE 168140-MS, 2014. doi: 10.2118/168140-MS [84] 钱斌,朱炬辉,杨海,等. 页岩储集层岩心水化作用实验[J]. 石油勘探与开发, 2017, 44(4):615-621. doi:10.11698/PED.2017.04.15 QIAN Bin, ZHU Juhui, YANG Hai, et al. Experiments on shale reservoirs plugs hydration[J]. Petroleum Exploration and Development, 2017, 44(4): 615-621. doi: 10.11698/PED.2017.04.15 [85] WIJAYA N, SHENG J J. Comparative study of well soaking timing(pre vs. post flowback)for water blockage removal from matrix-fracture interface[J]. Petroleum, 2020, 6(3): 286-292. doi: 10.1016/j.petlm.2019.11.001 [86] 张相春,杨亚静,刘军龙,等. 页岩油藏开发合理焖井时间数值模拟[J]. 西安石油大学学报(自然科学版), 2021, 36(3):71-76. doi:10.3969/j.issn.1673-064X.2021.03.010 ZHANG Xiangchun, YANG Yajing, LIU Junlong, et al. Numerical simulation of reasonable soaking time in development of shale oil[J]. Journal of Xi'an Petroleum University (Natural Science Edition), 2021, 36(3): 71-76. doi: 10.3969/j.issn.1673-064X.2021.03.010 [87] GAO Zhiye, HU Qinhong. Initial water saturation and imbibition fluid affect spontaneous imbibition into Barnett shale samples[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 541-551. doi: 10.1016/j.jngse.2016.07.038 [88] DUTTA R, LEE C, ODUMABO S, et al. Quantification of fracturing fluid migration due to spontaneous imbibition in fractured tight formations[C]. SPE 154939-MS, 2012. doi: 10.2118/154939-MS [89] WANG Mingyuan, LEUNG J Y. Numerical investigation of fluid-loss mechanisms during hydraulic fracturing flowback operations in tight reservoirs[J]. Journal of Petroleum Science and Engineering, 2015, 133: 85-102. doi: 10.1016/j.petrol.2015.05.013 [90] ALAHMADI H A H. A triple-porosity model for fractured horizontal wells[D]. Texas: Texas A & M University, 2010. [91] EZULIKE D O, DEHGHANPOUR H, HAWKES R V. Understanding flowback as a transient 2-phase displacement process: An extension of the linear dual-porosity model[C]. SPE 167164-MS, 2013. doi: 10.2118/167164-MS [92] LI Mei, MAGSIPOC E, ABDELAZIZ A, et al. Mapping fracture complexity in hydraulically fractured Montney shale by serial section reconstruction[C]. San Francisco: 54th US Rock Mechanics/Geomechanics Symposium, 2020. [93] SNOW D T. Anisotropie permeability of fractured media[J]. Water Resources Research, 1969, 5(6): 1273-1289. doi: 10.1029/WR005i006p01273 [94] 刘嘉. 页岩气多尺度运移特征与协同机理研究[D]. 徐州:中国矿业大学, 2019. LIU Jia. Study on shale gas multi-scale transport characteristics and flow consistency[D]. Xuzhou: China University of Mining and Technology, 2019. [95] 游先勇. 裂缝性气藏压裂液返排理论模型研究[D]. 成都:西南石油大学, 2019. YOU Xianyong. Research on the theoretical model of fracturing fluid flowback in fractured gas reservoirs[D]. Chengdu: Southwest Petroleum University, 2019. [96] 张海翔. 基于非均质模型的页岩气压裂水平井产能评价分析[D]. 徐州:中国矿业大学, 2017. ZHANG Haixiang. Production analysis of multi-fractured horizontal shale gas wells based on heterogeous model[D]. Xuzhou: China University of Mining and Technology, 2017. [97] 陈希. 页岩气藏压裂水平井返排模拟[D]. 成都:西南石油大学, 2019. CHEN Xi. Flowback simulation of fracturing horizontal wells in shale gas reservoirs[D]. Chengdu: Southwest Petroleum University, 2019. [98] CHILÈS J P. Stochastic modeling of natural fractured media:A review[J]. Quantitative Geology and Geostatistics, 2005, 14: 285-294. doi: 10.1007/978-1-4020-3610-1_29 [99] CLEMO T M. Dual permeability modeling of fractured media[D]. Columbia:University of British Columbia, 1994. doi: 10.14288/1.0052916 [100] ESKANDARI K, SRINIVASAN S. Reservoir modelling of complex geological systems—A multiple-point perspective[J]. Journal of Canadian Petroleum Technology, 2010, 49(8): 59-69. doi: 10.2118/139917-PA [101] BUSTIN A M M, BUSTIN R M. Importance of rock properties on the producibility of gas shales[J]. International Journal of Coal Geology, 2012, 103: 132-147. doi: 10.1016/j.coal.2012.04.012 [102] HUANG Linlin, LIU Xiangjun, XIONG Jian, et al. Experimental on the pore structure characteristics of Longmaxi Formation shale in southern Sichuan Basin, China[J]. Petroleum, 2021, 7(2): 135-141. doi: 10.1016/j.petlm.2020.07.006 [103] CHEN Lei, JIANG Zhexue, JIANG Shu, et al. Nanopore structure and fractal characteristics of lacustrine shale: Implications for shale gas storage and production potential[J]. Nanomaterials, 2019, 9(3): 390. doi: 10.3390/nano9030390 [104] MISHRA S, MENDHE V A, VARMA A K, et al. Influence of organic and inorganic content on fractal dimensions of Barakar and Barren measures shale gas reservoirs of Raniganj Basin, India[J]. Journal of Natural Gas Science and Engineering, 2018, 49: 393-409. doi: 10.1016/j.jngse.2017.11.028 [105] VISHAL V, CHANDRA D, BAHADUR J, et al. Interpreting pore dimensions in gas shales using a combination of SEM imaging, small-angle neutron scattering, and lowpressure gas adsorption[J]. Energy & Fuels, 2019, 33(6): 4835-4848. doi: 10.1021/acs.energyfuels.9b00442 [106] 谢卫东,王猛,王华,等. 海陆过渡相页岩气储层中孔隙多尺度分形特征[J]. 天然气地球科学, 2022, 33(3):451-460. doi:10.11764/j.issn.1672-1926.2021.06.006 XIE Weidong, WANG Meng, WANG Hua, et al. Multiscale fractal characteristics of pores in transitional shale gas reservoir[J]. Natural Gas Geoscience, 2022, 33(3): 451-460. doi: 10.11764/j.issn.1672-1926.2021.06.006 [107] 李小明,王亚蓉,吝文,等. 湖北荆门探区五峰组—龙马溪组深层页岩微观孔隙结构与分形特征[J]. 天然气地球科学,2022,33(4):629-641. doi:10.11764/j.issn.1672-1926.2021.11.011 LI Xiaoming, WANG Yarong, LIN Wen, et al. Micropore structure and fractal characteristics of deep shale from Wufeng Formation to Longmaxi Formation in Jingmen exploration area[J]. Natural Gas Geoscience, 2022, 33(4): 629-641. doi: 10.11764/j.issn.1672-1926.2021.11.011 [108] 秦钰佳,唐鑫,程龙飞,等. 基于分形理论的页岩纳米孔隙粒度效应探究[J]. 断块油气田, 2022, 29(4):520-526. doi:10.6056/dkyqt202204014 QIN Yujia, TANG Xin, CHENG Longfei, et al. Study on the particle size effect of shale nanopore based on fractal theory[J]. Fault-Block Oil and Gas Field, 2022, 29(4): 520-526. doi: 10.6056/dkyqt202204014 [109] CIPOLLA C L, LOLON E, ERDLE J, et al. Modeling well performance in shale-gas reservoirs[C]. SPE 125532-MS, 2009. doi: 10.2118/125532-MS [110] BARENBLATT G I, ZHELTOV Y P, KOCHINA I N. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks[J]. Journal of Applied Mathematics and Mechanics, 1960, 24(5): 1286-1303. [111] WARREN J E, ROOT P J. The behavior of naturally fractured reservoirs[J]. Society of Petroleum Engineers Journal, 1963, 3(3): 245-255. doi: 10.2118/426-PA [112] KAZEMI H. Pressure transient analysis of naturally fractured reservoirs with uniform fracture distribution[J]. Society of Petroleum Engineers Journal, 1969, 9(4): 451-462. doi: 10.2118/2156-A [113] WU Y S, MORIDIS G, BAI B, et al. A multi-continuum model for gas production in tight fractured reservoirs[C]. SPE 118944, 2009. doi: 10.2118/118944-MS [114] NOORISHAD J, MEHRAN M. An upstream finite element method for solution of transient transport equation in fractured porous media[J]. Water Resources Research, 1982, 18(3): 588-596. doi: 10.1029/WR018i003p00588 [115] BACA R G, ARNETT R C, LANGFORD D W. Modelling fluid flow in fractured-porous rock masses by finiteelement techniques[J]. International Journal for Numerical Methods in Fluids, 1984, 4(4): 337-348. doi: 10.1002/fld.1650040404 [116] KIM J G, DEO M D. Finite element, discrete‐fracture model for multiphase flow in porous media[J]. AIChE Journal, 2000, 46(6): 1120-1130. doi: 10.1002/aic.690460604 [117] LEE S H, LOUGH M F, JENSEN C L. Hierarchical modeling of flow in naturally fractured formations with multiple length scales[J]. Water Resources Research, 2001, 37(3): 443-455. doi: 10.1029/2000WR900340 [118] LI L, LEE S H. Efficient field-scale simulation of black oil in a naturally fractured reservoir through discrete fracture networks and homogenized media[C]. SPE 103901-PA, 2008, 11(4): 750-758. doi: 10.2118/103901-PA [119] MOINFAR A, VARAVEI A, SEPEHRNOORI K, et al. Development of an efficient embedded discrete fracture model for 3D compositional reservoir simulation in fractured reservoirs[J]. SPE Journal, 2014, 19(2): 289-303. doi: 10.2118/154246-PA [120] TEIMOORI A, CHEN Z, RAHMAN S S, et al. Calculation of permeability tensor using boundary element method provides a unique tool to simulate naturally fractured[C]. SPE 84545-MS, 2003. doi: 10.2118/84545-MS [121] 张世明,严侠,孙红霞,等. 基于离散裂缝模型的裂缝性介质等效渗透率求解新方法[J]. 科学技术与工程, 2014, 14(16):36-40. doi:10.3969/j.issn.1671-1815.2014.16.008 ZHANG Shiming, YAN Xia, SUN Hongxia, et al. An efficient calculation of equivalent permeability of fractured porous media based on discrete fracture model[J]. Science Technology and Engineering, 2014, 14(16): 36-40. doi: 10.3969/j.issn.1671-1815.2014.16.008 [122] ZHENG Y, ZAOUI A, SHAHROUR I. A theoretical study of swelling and shrinking of hydrated Wyoming montmorillonite[J]. Applied Clay Science, 2011, 51(1-2): 177-181. doi: 10.1016/j.clay.2010.10.027 [123] YANG W, ZHENG Y, ZAOUI A. Swelling and diffusion behaviour of Na-vermiculite at different hydrated states[J]. Solid State Ionics, 2015, 282: 13-17. doi: 10.1016/j.ssi.2015.09.007 [124] ZHANG Lihu, LU Xiancai, LIU Xiandong, et al. Hydration and mobility of interlayer ions of (NaX, CaY)-montmorillonite: A molecular dynamics study[J]. The Journal of Physical Chemistry C, 2014, 118(51): 29811-29821. doi:10.1021/jp508427c |
[1] | 汪敏, 杨桃, 唐洪明, 闫建平, 廖纪佳. 迁移深度神经网络的页岩总孔隙度预测[J]. 西南石油大学学报(自然科学版), 2023, 45(6): 69-79. |
[2] | 何磊, 牟必鑫, 杨平, 陈杨, 刘治成. 康滇隆起东缘上三叠统页岩气有利区优选[J]. 西南石油大学学报(自然科学版), 2023, 45(5): 43-56. |
[3] | 祝效华, 李瑞, 刘伟吉, 李枝林, 陆灯云. 深层页岩气水平井高效破岩提速技术发展现状[J]. 西南石油大学学报(自然科学版), 2023, 45(4): 1-18. |
[4] | 钟显康, 李浩男, 扈俊颖. 页岩气开采与集输过程中腐蚀问题与现状分析[J]. 西南石油大学学报(自然科学版), 2022, 44(6): 162-174. |
[5] | 李胜富, 李皋, 吴建忠, 李泽. 川西致密砂岩气藏井筒积液储层损害机理研究[J]. 西南石油大学学报(自然科学版), 2022, 44(3): 157-166. |
[6] | 覃建华, 杨琨, 丁艺, 张博宁, 唐慧莹. 基于KL-E的地质力学模型参数反演及应用[J]. 西南石油大学学报(自然科学版), 2022, 44(2): 65-78. |
[7] | 白杨, 李道雄, 李文哲, 李宏波, 罗平亚. 长宁区块龙马溪组水平段井壁稳定钻井液技术[J]. 西南石油大学学报(自然科学版), 2022, 44(2): 79-88. |
[8] | 梁兴, 单长安, 蒋佩, 张朝, 朱斗星. 浅层页岩气井全生命周期地质工程一体化应用[J]. 西南石油大学学报(自然科学版), 2021, 43(5): 1-18. |
[9] | 惠钢, 陈胜男, 王海, 顾斐. 基于改进残差的神经网络方法预测页岩气甜点[J]. 西南石油大学学报(自然科学版), 2021, 43(5): 19-32. |
[10] | 李俊乾, 卢双舫, 李文镖, 蔡建超. 基于过程分析法的页岩原位含气性评价[J]. 西南石油大学学报(自然科学版), 2021, 43(5): 42-55. |
[11] | 盛广龙, 黄罗义, 赵辉, 饶翔, 马嘉令. 页岩气藏压裂缝网扩展流动一体化模拟技术[J]. 西南石油大学学报(自然科学版), 2021, 43(5): 84-96. |
[12] | 陈学忠, 鲁友常, 吴易一, 马丽丽. 中美页岩气开采压裂返排液处置政策分析及启示[J]. 西南石油大学学报(自然科学版), 2021, 43(5): 212-219. |
[13] | 李郑涛, 张震, 吴鹏程, 马天寿, 付建红. 川南深层各向异性页岩井壁失稳力学机理[J]. 西南石油大学学报(自然科学版), 2021, 43(4): 11-25. |
[14] | 李皋, 李泽, 蒋祖军, 于浩, 何龙. 页岩-液体作用对套管变形的影响研究[J]. 西南石油大学学报(自然科学版), 2021, 43(1): 103-110. |
[15] | 乐宏, 杨兆中, 范宇. 宁209井区裂缝控藏体积压裂技术研究与应用[J]. 西南石油大学学报(自然科学版), 2020, 42(5): 86-98. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||