西南石油大学学报(自然科学版) ›› 2019, Vol. 41 ›› Issue (5): 75-84.DOI: 10.11885/j.issn.1674-5086.2018.06.24.02
徐珂1,2, 汪必峰2, 付晓龙3, 石达4
收稿日期:
2018-06-24
出版日期:
2019-10-10
发布日期:
2019-10-10
通讯作者:
徐珂,E-mail:xukee0505@163.com
作者简介:
徐珂,1991年生,男,汉族,四川遂宁人,博士,主要从事储层构造裂缝预测与地应力方面的研究工作。E-mail:xukee0505@163.com;汪必峰,1978年生,男,汉族,浙江宁波人,讲师,博士,主要从事构造地质学方面的教学与研究工作。E-mail:wangbf1978@163.com;付晓龙,1989年生,男,汉族,山东德州人,工程师,博士,主要从事构造地质学方面的研究工作。E-mail:upcfxl@163.com;石达,1991年生,男,汉族,河北唐山人,助理工程师,主要从事油气田开发地质及海洋油气开采工作。E-mail:shida@cnooc.com.cn
基金资助:
XU Ke1,2, WANG Bifeng2, FU Xiaolong3, SHI Da4
Received:
2018-06-24
Online:
2019-10-10
Published:
2019-10-10
摘要: 为提高应力场数值模拟的运算效率,基于ANSYS中的APDL语言编译自适应边界程序,将边界条件的人为调整过程自动化,并借助Petrel与ANSYS的联合建模技术以及三维非均质岩石力学场的构建技术,开展了渤南油田176区块三维应力场的智能预测。结果表明,自适应边界程序大幅且有效地缩短了人工反复尝试边界条件的时间,提高了应力场模拟的效率,且保证了预测精度。义176区块现今最大水平主应力方向总体呈近EW-SEE向,边界断层对应力方向影响较为显著,引起了约5 °~10 °的偏转。现今地应力数值变化较大,离散性高,平面上呈带状展布,具有北高南低的分布趋势,在目的层范围内属于Ia类地应力,岩石的非均质性是造成应力数值差异的主要原因。在义176区块中部存在一片条带状展布的“应力甜点”,可以作为井位部署和压裂作业的优势区域。
中图分类号:
徐珂, 汪必峰, 付晓龙, 石达. 渤南油田义176区块三维应力场智能预测[J]. 西南石油大学学报(自然科学版), 2019, 41(5): 75-84.
XU Ke, WANG Bifeng, FU Xiaolong, SHI Da. Smart Prediction of the Three-dimensional Stress Field of Block Yi 176 of the Bonan Oilfield[J]. 西南石油大学学报(自然科学版), 2019, 41(5): 75-84.
[1] BELL J S. Petro geoscience 2. In-situ stresses in sedimentary rocks (part 2):Applications of stress measurements[J]. Geoscience Canada, 1996, 23(3):135-153. [2] KANG H, ZHANG X, SI L, et al. In-situ stress measurements and stress distribution characteristics in underground coal mines in China[J]. Engineering Geology, 2010, 116(3-4):333-345. doi:10.1016/j.enggeo.2010.-09.015 [3] TAN Chengxuan, JIN Zhijun, ZHANG Mingli, et al. An approach to the present-day three-dimensional (3D) stress field and its application in hydrocarbon migration and accumulation in the Zhangqiang Depression, Liaohe Field, China[J]. Marine & Petroleum Geology, 2001, 18(9):983-994. doi:10.1016/S0264-8172(01)00040-X [4] KHAIR H A, COOKE D, HAND M. The effect of present day in situ stresses and paleo-stresses on locating sweet spots in unconventional reservoirs:A case study from Moomba-Big Lake fields, Cooper Basin, South Australia[J]. Journal of Petroleum Exploration & Production Technology, 2013, 3(4):207-221. doi:10.1007/s13202-013-0082-x [5] 王珂,戴俊生. 地应力与断层封闭性之间的定量关系[J]. 石油学报, 2012, 33(1):74-81. WANG Ke, DAI Junsheng. A quantitative relationship between the crustal stress and fault sealing ability[J]. Acta Petrolei Sinica, 2012, 33(1):74-81. [6] ZOBACK M D. Reservoir geomechanics[M]. Cambridge:Cambridge University Press, 2007. [7] 周文. 川西致密储层现今地应力场特征及石油工程地质应用研究[D]. 成都:成都理工大学, 2006. ZHOU Wen. The characteristics of in-situ earth stress and its application research in engineering geology of petroleum on compact reservoir in western Sichuan Depression[D]. Chengdu:Chengdu University of Technology, 2007. [8] 冯建伟,戴俊生,马占荣,等. 低渗透砂岩裂缝参数与应力场关系理论模型[J]. 石油学报, 2011, 32(4):664-671. FENG Jianwei, DAI Junsheng, MA Zhanrong, et al. The theoretical model between fracture parameters and stress field of low-permeability sandstones[J]. Acta Petrolei Sinica, 2011, 32(4):664-671. [9] ZOBACK M D, BARTON C A, BRUDY M, et al. Determination of stress orientation and magnitude in deep wells[J]. International Journal of Rock Mechanics & Mining Sciences, 2003, 40(7-8):1049-1076. doi:10.1016/j.-ijrmms.2003.07.001 [10] TINGAY M, BENTHAM P, FEYTER A, et al. Presentday stress-field rotations associated with evaporites in the offshore Nile Delta[J]. Geological Society of America Bulletin, 2011, 123(5-6):1171-1180. doi:10.1130/B30185.1 [11] SIBSON R H. Crustal stress, faulting and fluid flow[J]. Geological Society London Special Publications, 1994, 78(1):69-84. doi:10.1144/GSL.SP.1994.078.01.07 [12] BINH N T T, TOKUNAGA T, SON H P, et al. Presentday stress and pore pressure fields in the Cuu Long and Nam Con Son Basins, offshore Vietnam[J]. Marine & Petroleum Geology, 2007, 24(10):607-615. doi:10.1016/j.-marpetgeo.2007.04.002 [13] LIU Jingshou, DING Wenlong, YANG Haimeng, et al. 3D geomechanical modeling and numerical simulation of in-situ stress fields in shale reservoirs:A case study of the lower Cambrian Niutitang Formation in the Cen'gong Block, South China[J]. Tectonophysics, 2017, 712-713:663-683. doi:10.1016/j.tecto.2017.06.030 [14] LI Yong, TANG Dazhan, XU Hao, et al. In-situ stress distribution and its implication on coalbed methane development in Liulin Area, eastern Ordos Basin, China[J]. Journal of Petroleum Science & Engineering, 2014, 122:488-496. doi:10.1016/j.petrol.2014.08.010 [15] JU Wei, SUN Weifeng. Tectonic fractures in the Lower Cretaceous Xiagou Formation of Qingxi Oilfield, Jiuxi Basin, NW China. Part two:Numerical simulation of tectonic stress field and prediction of tectonic fractures[J]. Journal of Petroleum Science & Engineering, 2016, 146:626-636. doi:10.1016/j.petrol.2016.05.002 [16] JU Wei, SHEN Jian, QIN Yong, et al. In-situ stress state in the Linxing Region, eastern Ordos Basin, China:Implications for unconventional gas exploration and production[J]. Marine & Petroleum Geology, 2017, 86:67-78. doi:10.1016/j.marpetgeo.2017.05.026 [17] 徐珂,戴俊生,冯建伟,等. 南堡凹陷高深北区三维非均质应力场精细预测[J]. 中国矿业大学学报, 2018, 47(6):1357-1367. doi:10.13247/j.cnki.jcumt.000869 XU Ke, DAI Junsheng, FENG Jianwei, et al. Prediction of 3D heterogeneous in-situ stress field of Northern area in Gaoshen, Nanpu Sag, Bohai Bay Basin, China[J]. Journal of China University of Mining & Technology, 2018, 47(6):1357-1367. doi:10.13247/j.cnki.jcumt.000869 [18] 王金安,李飞. 复杂地应力场反演优化算法及研究新进展[J]. 中国矿业大学学报, 2015, 44(2):189-205. doi:10.13247/j.cnki.jcumt.000292 WANG Jin'an, LI Fei. Review of inverse optimal algorithm of and new achievement in-situ stress field[J]. Journal of China University of Minim & Technology, 2015, 44(2):189-205. doi:10.13247/j.cnki.jcumt.000292 [19] 李永松,艾凯,尹健民. 基于VB与Matlab的BP神经网络在地应力场分析中的应用[J]. 长江科学院院报, 2009, 26(6):24-27. LI Yongsong, AI Kai, YIN Jianmin. Application of BP network based on VB and MATLAB in analysis of insitu stress field[J]. Journal of Yangtze River Scientific Research Institute, 2009, 26(6):24-27. [20] 朱传华,王伟锋,王青振,等. 非均质储层三维构造应力场模拟方法[J]. 吉林大学学报(地球科学版), 2016, 46(5):1580-1588. doi:10.13278/j.cnki.jjuese.-201605306 ZHU Chuanhua, WANG Weifeng, WANG Qingzhen, et al. Numerical simulation of structural strain for Turbidite Sands Reservoirs of Low Permeability[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(5):1580-1588. doi:10.13278/j.cnki.jjuese.201605306 [21] FU Xiaolong, DAI Junsheng, FENG Jianwei. Prediction of tectonic fractures in coal reservoirs using geomechanical method[J]. Geosciences Journal, 2018, 22(4):589-608. doi:10.1007/s12303-017-0072-y [22] 朱淼. 胜利油田义176块沙四上亚段三、四砂组储层评价[D]. 武汉:长江大学, 2014. ZHU Miao. The reservoir evaluation of the upper section of Sha-4, third and fourth sand group in Yi 176, Shengli Oilfield[D]. Wuhan:Changjiang University, 2014. [23] 赖富强,孙建孟,苏远大,等. 利用多极子阵列声波测井预测地层破裂压力[J]. 勘探地球物理进展, 2007, 30(1):39-42. LAI Fuqiang, SUN Jianmeng, SU Yuanda, et al. Prediction of fracture pressure using mufti-pole array acoustic logging[J]. Progress in Exploration Geophysics, 2007, 30(1):39-42. [24] 班勇凯,曾玉峰,韩雪,等. 正交多极子阵列声波测井资料在桩西油田压裂中的应用[J]. 油气井测试, 2015, 24(4):35-37. BAN Yongkai, ZENG Yufeng, HAN Xue, et al. Application of cross multipole array acoustic logging data in fracturing operation of Zhuangxi Oilfield[J]. Well Testing, 2015, 24(4):35-37. [25] 彭瑞,孟祥瑞,赵光明,等. 不同岩性岩石声发射地应力测试及其应用[J]. 中南大学学报(自然科学版), 2015, 46(9):3377-3384. doi:10.11817/j.issn.672-7207.2015.-09.030 PENG Rui, MENG Xiangrui, ZHAO Guangming, et al. Acoustic emission in-situ stress testing of different lithology rock and its application[J]. Journal of Central South University (Science and Technology), 2015, 46(9):3377-3384. doi:10.11817/j.issn.672-7207.2015.-09.030 doi:10.11817/j.issn.1672-7207.2015.09.030 [26] 尹帅,丁文龙,高敏东,等. 樊庄北部3号煤层现今应力场分布数值模拟[J]. 西南石油大学学报(自然科学版), 2017, 39(4):81-89. doi:10.11885/j.issn.1674-5086.2015.06.02.02 YIN Shuai, DING Wenlong, GAO Mindong, et al. The in-situ stress field distribution numerical simulation of No.3 Coal Seam in the North of Fanzhuang CBM Well Blocks[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2017, 39(4):81-89. doi:10.11885/j.issn.1674-5086.2015.06.02.02 [27] 董建华,刘鹏,王薇. 地应力剖面在水力压裂施工中的应用[J]. 大庆石油学院学报, 2005, 29(2):40-42. DONG Jianhua, LIU Peng, WANG Wei. Application of in situ stress profile to hydraulic fracturing[J]. Journal of Daqing Petroleum Insitute, 2005, 29(2):40-42. [28] SAVAGE W Z, SWOLFS H S, AMADEI B. On the state of stress in the near-surface of the earth's crust[J]. Pure & Applied Geophysics, 1992, 138(2):207-228. doi:10.1007/BF00878896 [29] 李传亮,朱苏阳. 关于岩石侧压系数的认识误区[J]. 西南石油大学学报(自然科学版), 2017, 39(3):135-140. doi:10.11885/j.issn.1674-5086.2015.10.26.01 LI Chuanliang, ZHU Suyang. On misunderstandings of the rock lateral pressure coefficient[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2017, 39(3):135-140. doi:10.11885/j.issn.1674-5086.2015.10.26.01 [30] 苏生瑞. 断裂构造对地应力场的影响及其工程意义[D]. 成都:成都理工学院, 2001. SU Shengrui. Effect of fractures on rock stresses and its significance in geological engineering[D]. Chengdu:Chengdu University of Technology, 2001. |
[1] | 汤军, 段宇英, 段宏亮, 刘丹, 朱枫帆. 高邮凹陷T23顶面坡度分布与地形关系研究[J]. 西南石油大学学报(自然科学版), 2020, 42(6): 26-34. |
[2] | 彭先, 彭军, 张连进, 林攀, 兰雪梅. 双鱼石构造栖霞组白云岩储层特征及主控因素[J]. 西南石油大学学报(自然科学版), 2020, 42(5): 1-12. |
[3] | 白晓亮, 杨跃明, 文龙, 罗冰, 洪海涛. 四川盆地中二叠统栖霞组沉积相展布及勘探意义[J]. 西南石油大学学报(自然科学版), 2020, 42(5): 13-24. |
[4] | 魏华动, 石桂鹏, 朱秀香, 张云峰, 王振宇. 塔中西部良里塔格组台缘台内礁滩储层差异性[J]. 西南石油大学学报(自然科学版), 2020, 42(5): 25-38. |
[5] | 邱争科, 李婷, 杨兴, 胡宗芳, 胡戈玲. 准噶尔盆地克—百断裂带石炭系内幕成藏特征[J]. 西南石油大学学报(自然科学版), 2020, 42(5): 39-47. |
[6] | 李智, 张志业, 何登发, 罗曦, 熊健. 南阳凹陷边界断层三维几何学及运动学特征[J]. 西南石油大学学报(自然科学版), 2020, 42(5): 48-62. |
[7] | 陈雪, 徐剑良, 黎菁, 肖剑锋, 钟思存. 威远区块页岩气水平井产量主控因素分析[J]. 西南石油大学学报(自然科学版), 2020, 42(5): 63-74. |
[8] | 田瀚, 张建勇, 李昌, 李文正, 姚倩颖. 成像测井在灯影组微生物岩岩相识别中的应用[J]. 西南石油大学学报(自然科学版), 2020, 42(5): 75-85. |
[9] | 江同文, 张辉, 徐珂, 王志民, 王海应. 克深气田储层地质力学特征及其对开发的影响[J]. 西南石油大学学报(自然科学版), 2020, 42(4): 1-12. |
[10] | 王伟东, 彭军, 夏青松, 段冠一, 孙恩慧. 川北大安寨生屑灰岩储层主控因素及预测思路[J]. 西南石油大学学报(自然科学版), 2020, 42(4): 13-21. |
[11] | 赵晓明, 冯圣伦, 谭程鹏, 冯莫沉, 唐春. 平移型点坝形成机理与沉积特征[J]. 西南石油大学学报(自然科学版), 2020, 42(4): 22-36. |
[12] | 李晨曦, 王亚青, 杨希濮, 卜范青, 段瑞凯. 深水浊积水道储层构型叠置关系定量表征探索[J]. 西南石油大学学报(自然科学版), 2020, 42(4): 37-46. |
[13] | 祝金利. 神木双110井区非均质气藏井位优化部署技术[J]. 西南石油大学学报(自然科学版), 2020, 42(4): 83-94. |
[14] | 宁方兴, 王学军, 郝雪峰, 杨万芹, 丁桔红. 东营凹陷细粒沉积岩岩相组合特征[J]. 西南石油大学学报(自然科学版), 2020, 42(4): 55-65. |
[15] | 李冬, 黄兴文. 墨西哥Perdido带上Wilcox组油藏富集模式分析[J]. 西南石油大学学报(自然科学版), 2020, 42(4): 73-82. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||