西南石油大学学报(自然科学版) ›› 2019, Vol. 41 ›› Issue (2): 75-83.DOI: 10.11885/j.issn.1674-5086.2018.04.19.02

• 地质勘探 • 上一篇    下一篇

金坛盐穴储气库腔体偏溶特征分析

齐得山, 李淑平, 王元刚   

  1. 中国石油管道有限责任公司西气东输分公司, 上海 浦东 200122
  • 收稿日期:2018-04-19 出版日期:2019-04-10 发布日期:2019-04-10
  • 通讯作者: 齐得山,E-mail:xqdsqideshan@petrochina.com.cn
  • 作者简介:齐得山,1987年生,男,汉族,河南周口人,工程师,硕士,主要从事盐穴储气库溶腔工艺优化设计及动态跟踪分析方面的研究。E-mail:xqdsqideshan@petrochina.com.cn;李淑平,1986年生,男,汉族,山东德州人,工程师,硕士,主要从事盐穴储气库专业计算、工艺优化、软件设计及技术开发方面的研究。E-mail:lsplus@petrochina.com.cn;王元刚,1986年生,男,汉族,山东临沂人,工程师,硕士,主要从事盐穴储气库溶腔工艺优化设计及动态跟踪分析方面的研究。E-mail:515935924@qq.com
  • 基金资助:
    中国石油储气库重大专项(2015E-4008)

Characteristics of Cavity Differential Dissolution of Jintan Salt Cave Gas Reservoir

QI Deshan, LI Shuping, WANG Yuangang   

  1. West-East Gas Pipeline Company, PetroChina Pipeline Company, Pudong, Shanghai 200122, China
  • Received:2018-04-19 Online:2019-04-10 Published:2019-04-10

摘要: 国内可用于盐穴储气库建设的盐矿以层状盐岩为主,造腔过程中普遍存在腔体偏溶现象,研究其特征及成因对国内以后盐穴储气库的建设具有一定的借鉴作用。以国内第一个盐穴储气库金坛储气库为研究对象,基于声呐测腔数据,提出了以偏溶系数,即腔体最大半径与同一平面最小半径的比值,来定量表征腔体的偏溶程度,最大半径方向即为腔体偏溶方向。统计结果表明,金坛储气库腔体偏溶系数1.13~11.88,偏溶方向以北东南西向为主。结合夹层、可造腔盐层厚度和地应力数据,分析了腔体偏溶发生的原因,认为造腔过程中夹层的不均匀垮塌可促使腔体发生偏溶;可造腔盐层厚度越大,腔体发生偏溶的可能性就越大,偏溶程度就越严重;地应力方向对腔体的偏溶方向具有重要影响。

关键词: 盐穴储气库, 金坛, 腔体形态, 偏溶成因, 地应力, 水溶造腔

Abstract: In China, salt mines that can be used for salt cave gas reservoir construction are mostly composed of layered salt rocks, and differential dissolution of the cavity often occurs during solution mining. Research into the characteristics and causes of such phenomenon can provide references for future construction of salt cave gas reservoirs in China. This work investigates the Jintan Salt Cave Gas Reservoir, which is the first salt cave gas reservoir in China. Based on sonar cavity data, differential dissolution in the cavity can be quantitatively analyzed using the differential dissolution coefficient, which is the ratio of the maximum cavity radius to the minimum radius in the same plane. The direction of the maximum radius is the direction of differential dissolution in the cavity. The statistical results reveal that, for the Jintan Gas Reservoir, the differential dissolution coefficient in the cavity is 1.13~11.88, and differential dissolution occurs primarily along the northeast-southwest direction. The causes of differential dissolution in the cavity are analyzed by integrating the thickness and ground stress data of interlayers and salt layers that can be used for mining. It is believed that non-uniform collapses of interlayers during solution mining can lead to differential dissolution in the cavity. Thicker salt layers that are more suitable for mining result in greater likelihood and severity of differential dissolution in the cavity. The ground stress directions significantly influence partial melting in the cavity.

Key words: salt cave gas reservoir, Jintan, cavity morphology, causes of differential dissolution, ground stress, solution mining

中图分类号: