西南石油大学学报(自然科学版) ›› 2019, Vol. 41 ›› Issue (2): 84-96.DOI: 10.11885/j.issn.1674-5086.2018.05.21.01

• 石油与天然气工程 • 上一篇    下一篇

济阳拗陷页岩储层水平井裂缝扩展数值模拟

薛仁江1,2, 郭建春1, 赵志红1, 周广清3, 孟宪波3   

  1. 1. “油气藏地质及开发工程”国家重点实验室·西南石油大学, 四川 成都 610500;
    2. 中国石化胜利石油工程有限公司井下作业公司, 山东 东营 257000;
    3. 中国石化胜利油田分公司油气勘探管理中心, 山东 东营 257000
  • 收稿日期:2018-05-21 出版日期:2019-04-10 发布日期:2019-04-10
  • 通讯作者: 赵志红,E-mail:swpuzzh@163.com
  • 作者简介:薛仁江,1980年生,男,汉族,河北冀州人,高级工程师,博士,主要从事油气田开发方面的工作。E-mail:29865227@qq.com;郭建春,1970年生,男,汉族,四川营山人,教授,博士生导师,主要从事低渗、致密油气藏和页岩气藏压裂、酸化理论与技术研究。E-mail:swpuzzh@163.com;赵志红,1981年生,男,汉族,重庆忠县人,副教授,博士,主要从事低渗、致密油气藏和页岩气储层改造理论与技术研究。E-mail:swpuzzh@163.com;周广清,1969年生,男,汉族,山东郓城人,高级工程师,硕士,主要从事油气田勘探方面的工作。E-mail:zhouguangqing.slyt@sinopec.com;孟宪波,1977年生,男,汉族,山东临邑人,高级工程师,主要从事油气勘探开发,井下试油作业及储层改造增产技术等方面的工作。E-mail:slmxb@qq.com
  • 基金资助:
    国家杰出青年科学基金(51525404,51504204);国家科技重大专项(2016ZX05023-001)

Numerical Simulation of Fracture Propagation in Horizontal Wells of Shale Reservoirs in Jiyang Depression

XUE Renjiang1,2, GUO Jianchun1, ZHAO Zhihong1, ZHOU Guangqing3, MENG Xianbo3   

  1. 1. State key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China;
    2. Downhole Service Company of SINOPEC Shengli Petroleum Engineering Co. Ltd., Dongying, Shandong 257000, China;
    3. Manage Center of Oil & Gas Exploration of SINOPEC Shengli Oilfield Company, Dongying, Shandong 257000, China
  • Received:2018-05-21 Online:2019-04-10 Published:2019-04-10

摘要: 由于物理实验受到实验条件、数量的限制,难以对裂缝扩展规律开展大规模的研究。因此,在有了一定的岩石力学测试、页岩压裂破裂方式测试以及页岩压裂裂缝扩展物模试验的基础上,开展了页岩压裂裂缝起裂及扩展规律数值模拟研究。基于流固耦合Biot固结理论、Darcy渗流定律,采用最大拉伸强度准则和Mohr Coulomb准则损伤阈值进行单元损伤判断,引入全新的材料分布算法,建立了水力压裂裂缝扩展的有限元计算模型。进行了岩石样本的参数标定试验。采用有限元计算方法研究了地应力、页岩脆性指数、压裂液黏度和层理特征等关键物理参数对页岩裂缝扩展的影响。结果表明,当脆性指数较小时,水力裂缝主要沿最大主应力方向在页岩基质中扩展,难以转向形成复杂缝网。层理胶结强度较高时,水力作用即便在局部压开天然层理,也难以持续以大角度偏离,而只能形成比较单一的裂缝。地应力比、压裂液黏度越低,层理密度等特性越高时,裂纹网络越复杂。

关键词: 水力压裂, 裂纹扩展, 页岩, 水平井, 有限元

Abstract: Physical experiments are limited by experimental conditions and the number of experimental samples available. Thus, it is difficult to conduct large-scale studies on fracture propagation patterns. Hence, a numerical simulation study on fracture initiation and propagation patterns during hydraulic fracturing of shales is conducted based on certain mechanical tests of rocks, rupture tests on hydraulic fracturing of shales, and physical model tests on fracture propagation during hydraulic fracturing of shales. Based on fluid-solid coupling through Biot's consolidation theory and Darcy's seepage law, the maximum tensile strength criterion, and the Mohr-Coulomb criterion as a damage threshold for damage determination of units, a new material distribution algorithm is introduced to construct a finite element calculation model of fracture propagation during hydraulic fracturing. Parameter calibration tests were performed on rock samples, and the influences of key physical parameters on fracture propagation in shales were investigated through the finite element calculation method. The key physical parameters are ground stresses, brittleness indices of shales, the viscosity of fracturing fluids, and bedding characteristics. The general view is that when brittleness indices are small, hydraulic fractures propagate in the shale matrix mostly along the direction of the maximum principal stress. The fractures hardly change direction to form a complex network of fractures. For highly cemented beds, hydraulic actions cannot deviate at a large angle continuously, even in partially open natural beds, and thus form only relatively uniform fractures. Fracture networks become more complex when ground stress ratios and the viscosity of fracturing fluids are lower, and bedding densities are higher.

Key words: hydraulic fracturing, fracture propagation, shale, horizontal well, FEM

中图分类号: