[1] 唐颖,张金川,张琴,等. 页岩气井水力压裂技术及其应用分析[J]. 天然气工业, 2010, 30(10):33-38. doi:10.3787/j.issn.1000-0976.2010.10.008 TANG Ying, ZHANG Jinchuan, ZHANG Qin, et al. An analysis of hydraulic fracturing technology in shale gas wells and its application[J]. Natural Gas Industry, 2010, 30(10):33-38. doi:10.3787/j.issn.1000-0976.2010.10.008 [2] 贾长贵,路保平,蒋廷学,等. DY2HF深层页岩气水平井分段压裂技术[J]. 石油钻探技术, 2014, 42(2):85-90. doi:10.3969/j.issn.10010890.2014.02.017 JIA Changgui, LU Baoping, JIANG Tingxue, et al. Multi-stage horizontal well fracturing technology in deep shale gas Well DY2 HF[J]. Petroleum Drilling Techniques, 2014, 42(2):85-90. doi:10.3969/j.issn.10010890.2014.02.017 [3] 张东晓,杨婷云. 美国页岩气水力压裂开发对环境的影响[J]. 石油勘探与开发, 2015, 42(6):801-807. doi:10.11698/PED.2015.06.14 ZHANG Dongxiao, YANG Tingyun. Environmental impacts of hydraulic fracturing in shale gas development in the United States[J]. Petroleum Exploration and Development, 2015, 42(6):801-807. doi:10.11698/PED.2015.06.14 [4] 叶登胜,尹丛彬,蒋海,等. 四川盆地南部页岩气藏大型水力压裂作业先导性试验[J]. 天然气工业,2011,31(4):48-50. doi:10.3787/j.issn.1000-0976.2011.04.011 YE Dengsheng, YIN Congbin, JIANG Hai, et al. A pilot test of large-scale hydraulic fracturing in shale gas reservoir of the southern Sichuan Basin[J]. Natural Gas Industry, 2011, 31(4):48-50. doi:10.3787/j.issn.1000-0976.2011.04.011 [5] 张建,熊炜,赵宇新. 隆页1HF井桥塞分段大型压裂技术[J]. 油气藏评价与开发, 2018, 8(1):76-80. ZHANG Jian, XIONG Wei, ZHAO Yuxin. Large segment fracturing technology of pumping bridge plug in Well Longye-lHF[J]. Reservoir Evaluation and Development, 2018, 8(1):76-80. [6] 方朝合,黄志龙,王巧智,等. 页岩气藏超低含水饱和度形成模拟及其意义[J]. 地球化学, 2015, 44(3):267-274. doi:10.3969/j.issn.0379-1726.2015.03.006 FANG Chaohe, HUANG Zhilong, WANG Qiaozhi, et al. Simulation of utlra-low water saturation in shale gas reservoirs and its significance[J]. Geochimica, 2015, 44(3):267-274. doi:10.3969/j.issn.0379-1726.2015.03.006 [7] XU Chengyuan, KANG Yili, YOU Zhenjiang, et al. Review on formation damage mechanisms and processes in shale gas reservoir:Known and to be known[J]. Journal of Natural Gas Science and Engineering, 2016, 36:1208-1219. doi:10.1016/j.jngse.2016.03.096 [8] 康毅力,张晓怡,游利军,等. 页岩气藏自然返排缓解水相圈闭损害实验研究[J]. 天然气地球科学, 2017, 28(6):819-827. doi:10.11764/j.issn.1672-1926.2017.05.009 KANG Yili, ZHANG Xiaoyi, YOU Lijun, et al. The experimental research on spontaneous flowback relieving aqueous phase trapping damage in shale gas reservoirs[J]. Natural Gas Geoscience, 2017, 28(6):819-827. doi:10.11764/j.issn.1672-1926.2017.05.009 [9] 陈明君,康毅力,游利军. 利用高温热处理提高致密储层渗透性[J]. 天然气地球科学, 2013, 24(6):1226-1231. CHEN Mingjun, KANG Yili, YOU Lijun. Advantages in formation heat treatment to enhance permeability in tight reservoir[J]. Natural Gas Geoscience, 2013, 24(6):1226-1231. [10] 游利军,康毅力,陈强,等. 氧化爆裂提高页岩气采收率的前景[J]. 天然气工业, 2017, 37(5):53-61. doi:10.3787/j.issn.1000-0976.2017.05.007 YOU Lijun, KANG Yili, CHEN Qiang, et al. Prospect of shale gas recovery enhancement by oxidation-induced rock burst[J]. Natural Gas Industry, 2017, 37(5):53-61. doi:10.3787/j.issn.1000-0976.2017.05.007 [11] KANG Yili, CHEN Mingjun, CHEN Zhangxin, et al. Investigation of formation heat treatment to enhance the multiscale gas transport ability of shale[J]. Journal of Natural Gas Science and Engineering, 2016, 35:265-275. doi:10.1016/j.jngse.2016.08.058 [12] 游利军,李鑫磊,康毅力,等. 富有机质页岩储层热激致裂增渗的有利条件[J]. 天然气地球科学, 2020, 31(3):325-334. doi:10.11764/j.issn.1672-1926.2019.11.009 YOU Lijun, LI Xinlei, KANG Yili, et al. Advantages of thermal stimulation to induce shale cracking after hydraulic fracturing over organic-rich shale reservoirs[J]. Natural Gas Geoscience, 2020, 31(3):325-334. doi:10.11764/j.issn.1672-1926.2019.11.009 [13] JAMALUDDIN A K M, VANDAMME L M, MANN B K. Formation heat treatment (FHT):A state-of-the art technology for near-wellbore formation damage treatment[C]. SPE PETSOC-95-67, 1995. doi:10.2118/95-67 [14] 李皋,孟英峰,董兆雄,等. 砂岩储集层微波加热产生微裂缝的机理及意义[J]. 石油勘探与开发, 2007, 34(1):93-97. doi:10.3321/j.issn:1000-0747.2007.01.018 LI Gao, MENG Yingfeng, DONG Zhaoxiong, et al. Mechanisms and significance of microfractures generated by microwave heating in sandstone reservoirs[J]. Petroleum Exploration and Development, 2007, 34(1):93-97. doi:10.3321/j.issn:1000-0747.2007.01.018 [15] JAMALUDDIN A K M, VANDAMME L M, NAZARKO T W, et al. Heat treatment for clay-related near wellbore formation damage[J]. Journal of Canadian Petroleum Technology, 1998, 37(1):56-63. doi:10.2118/98-01-09 [16] LIU Junrong, LI Boyu, TIAN Wei, et al. Investigating and predicting permeability variation in thermally cracked dry rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 103:77-88. doi:10.1016/j.ijrmms.2018.01.023 [17] CHA Minsu, ALQAHTANI N B, YIN Xiaolong, et al. Laboratory system for studying cryogenic thermal rock fracturing for well stimulation[J]. Journal of Petroleum Science and Engineering, 2017, 156:780-789. doi:10.1016/j.petrol.2017.06.062 [18] SUNDBERG J, BACK P, CHRISTIANSSON R, et al. Modelling of thermal rock mass properties at the potential sites of a Swedish nuclear waste repository[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(6):1042-1054. doi:10.1016/j.ijrmms.2009.02.004 [19] BRUEL D. Impact of induced thermal stresses during circulation tests in an engineered fractured geothermal reservoir:Example of the soultz-sous-forêts european hot fractured rock geothermal project, Rhine Graben, France[J]. Oil & Gas Science and Technology-Revue, IFP, 2002, 57(5):459-470. doi:10.2516/ogst:2002030 [20] 付亚荣,李明磊,王树义,等. 干热岩勘探开发现状及前景[J]. 石油钻采工艺, 2018, 40(4):526-540. doi:10.13639/j.odpt.2018.04.022 FU Yarong, LI Minglei, WANG Shuyi, et al. Present situation and prospect of hot dry rock exploration and development[J]. Oil Drilling & Production Technology, 2018, 40(4):526-540. doi:10.13639/j.odpt.2018.04.022 [21] FOWLER T D, VINEGAR H J. Oil shale ICP-Colorado Field pilots[C]. SPE 121164-MS, 2009. doi:10.2118/121164-MS [22] 汪友平,王益维,孟祥龙,等. 流体加热方式原位开采油页岩新思路[J]. 石油钻采工艺, 2014, 36(4):71-74. doi:10.13639/j.odpt.2014.04.018 WANG Youping, WANG Yiwei, MENG Xianglong, et al. A new idea for in-situ retorting oil shale by way of fluid heating technology[J]. Oil Drilling & Production Technology, 2014, 36(4):71-74. doi:10.13639/j.odpt.2014.04.018 [23] ZOU Caineng, CHEN Yanpeng, KONG Lingfeng, et al. Underground coal gasification and its strategic significance to the development of natural gas industry in China[J]. Petroleum Exploration and Development, 2019, 46(2):205-215. doi:10.1016/S1876-3804(19)60002-9 [24] BHUTTO A W, BAZMI A A, ZAHEDI G. Underground coal gasification:From fundamentals to applications[J]. Progress in Energy and Combustion Science, 2013, 39(1):189-214. doi:10.1016/j.pecs.2012.09.004 [25] SHAHTALEBI A, KHAN C, DMYTERKO A, et al. Investigation of thermal stimulation of coal seam gas fields for accelerated gas recovery[J]. Fuel, 2016, 180:301-313. doi:10.1016/j.fuel.2016.03.057 [26] WANG Hongcai, REZAEE R, SAEEDI A. Evaluation of microwave heating on fluid invasion and phase trapping in tight gas reservoirs[C]. SPE 176906-MS, 2015. doi:10.2118/176906-MS [27] WANG Hanyi, AJAO O, ECONOMIDES M J. Conceptual study of thermal stimulation in shale gas formations[J]. Journal of Natural Gas Science and Engineering, 2014, 21:874-885. doi:10.1016/j.jngse.2014.10.015 [28] HAYATDAVOUDI A, NIZAMUTDINOV R, KRAVETS J, et al. Increasing the pierre shale reservoir volume using heat:Part I[C]. ARMA-2015-816, 2015. [29] 杨天鸿,唐春安,徐涛. 岩石破裂过程的渗流特性——理论、模型与应用[M]. 北京:科学出版社,2004. YANG Tianhong, TANG Chun'an, XU Tao. Seepage characteristic in rock failure:Theory model and applications[M]. Beijing:Science Press, 2004. [30] 游利军,程秋洋,康毅力,等. 页岩裂缝网络水相自吸试验[J]. 中国石油大学学报(自然科学版), 2018, 42(1):82-89. doi:10.3969/j.issn.1673-5005.2018.01.010 YOU Lijun, CHENG Qiuyang, KANG Yili, et al. Experimental study on spontaneous water imbibition in fracture networks of shale rocks[J]. Journal of China University of Petroleum (Edition of Natural Science), 2018, 42(1):82-89. doi:10.3969/j.issn.1673-5005.2018.01.010 [31] HETTEMA M H H, WOLF K H A A, Pater C J. The influence of steam pressure on thermal spalling of sedimentary rock:Theory and experiments[J]. International Journal of Rock Mechanics & Mining Sciences, 1998, 35(1):3-15. doi:10.1016/S0148-9062(97)00318-5 [32] HAYATDAVOUDI A, CHITILA D, BOUKADI F. Effect of cyclic temperature, water vapor and exposure time on micro fracture propagation in shale[C]. ISRM-13CONGRESS-2015-364, 2015. [33] CHEN Jinhong, GEORGI Daniel, LIU Huihai, et al. Fracturing tight rocks by elevated pore water pressure using microwaving and its applications[C]. SPWLA-2015-RRR, 2015. [34] KEANEY G M, JONES C, MEREDITH P, et al. Thermal damage and the evolution of crack connectivity and permeability in ultra-low permeability rocks[C]. ARMA-04-537, 2004. [35] KIM K M, KEMENY J. Effect of thermal shock and rapid unloading on mechanical rock properties[C]. ARMA-09-084, 2009. [36] YIN Tubing, SHU Ronghua, LI Xibing, et al. Comparison of mechanical properties in high temperature and thermal treatment granite[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(7):1926-1937. doi:10.1016/S1003-6326(16)64311-X [37] ZHU Tantan, JING Hongwen, SU Haijian, et al. Physical and mechanical properties of sandstone containing a single fissure after exposure to high temperatures[J]. International Journal of Mining Science and Technology, 2016, 26(2):319-325. doi:10.1016/j.ijmst.2015.12.019 [38] KANG Yili, CHEN Mingjun, YOU Lijun, et al. Laboratory measurement and interpretation of the changes of physical properties after heat treatment tight porous media[J]. Journal of Chemistry, 2015:1-10. doi:10.1155/2015/341616 [39] LIU Shi, XU Jinyu. An experimental study on the physicomechanical properties of two post-high-temperature rocks[J]. Engineering Geology, 2015, 185:63-70. doi:10.1016/j.enggeo.2014.11.013 [40] SUN Qiang, ZHANG Weiqiang, XUE Lei, et al. Thermal damage pattern and thresholds of granite[J]. Environmental Earth Sciences, 2015, 74(3):2341-2349. doi:10.1007/s12665-015-4234-9 |