[1] 王旭. 川西中浅层气藏泡沫排水采气工艺技术研究与应用[J]. 钻采工艺,2020,43(2):70-71. doi:10.3969/J.ISSN.1006-768X.2020.02.18 WANG Xu. Research and application of technology of gas recovery by foam drainage in shallow-middle gas reservoir in Western Sichuan[J]. Drilling & Production Technology, 2020, 43(2):70-71. doi:10.3969/J.ISSN.1006-768X.2020.02.18 [2] 瞿超超,刘正中,殷鸿尧,等. 新型排水采气用抗凝析油泡排剂[J]. 石油学报,2020,41(7):872-873. doi:10.7623/syxb202007008 QU Chaochao, LIU Zhengzhong, YIN Hongyao, et al. A new anti-condensate foaming agent for drainage gas recovery[J]. Acta Petrolei Sinic, 2020, 41(7):872-873. doi:10.7623/syxb202007008 [3] 刘世义,傅春梅,邹一峰,等. 川西气田低压低产井泡沫排水新技术及其应用[J]. 新疆石油天然气,2017,13(2):76-78. doi:10.3969/j.issn.1673-2677.2017.02.017 LIU Shiyi, FU Chunmei, ZOU Yifeng, et al. A new foam drainage gas recovery technology and application in low-pressure & low-production wells in Western Sichuan Gas Field[J]. Xinjiang Oil & Gas, 2017, 13(2):76-78. doi:10.3969/j.issn.1673-2677.2017.02.017 [4] 刘通,周兴付,陈海龙,等. 毛细管泡沫排液采气工艺在低压、小液量水平井中的推广应用——以川西坳陷中浅层气藏为例[J]. 天然气工业,2018,38(6):83-90. doi:10.3787/j.issn.1000-0976.2018.06.011 LIU Tong, ZHOU Xingfu, CHEN Hailong, et al. Popularization and application of capillary foam deliquification technology in horizontal wells with low pressures and low liquid production rates:A case study on middle-shallow gas reservoirs in the Western Sichuan Depression[J]. Natural Gas Industry, 2018, 38(6):83-90. doi:10.3787/j.issn.1000-0976.2018.06.011 [5] 张烈辉,罗程程,刘永辉,等. 气井积液预测研究进展[J]. 天然气工业,2019,39(1):57-63. doi:10.3787/j.issn.1000-0976.2019.01.006 ZHANG Liehui, LUO Chengcheng, LIU Yonghui, et al. Research progress in liquid loading prediction of gas wells[J]. Natural Gas Industry, 2019, 39(1):57-63. doi:10.3787/j.issn.1000-0976.2019.01.006 [6] 刘通,郭新江,王雨生,等. 川西积液水平井井筒压力及液位预测[J]. 石油钻采工艺,2017,39(1):97-102. doi:10.13639/j.odpt.2017.01.019 LIU Tong, GUO Xinjiang, WANG Yusheng, et al. Borehole pressure and liquid level prediction of liquid-loading horizontal wells in West Sichuan[J]. Oil Drilling & Production Technology, 2017, 39(1):97-102. doi:10.13639/j.odpt.2017.01.019 [7] 覃峰. 天然气开采工艺技术手册[M]. 北京:石油工业出版社,2008,203-204. QIN Feng. Natural gas production technology manual[M]. Beijing:Petroleum Industry Press, 2008, 203-204. [8] 王武杰,崔国民,魏耀奇,等. 倾斜气井临界携液流速预测新模型[J]. 石油勘探与开发,2021,48(5):1053-1060. doi:10.11698/PED.2021.02.17 WANG Wujie, CUI Guomin, WEI Yaoqi, et al. A new model for predicting the critical liquid-carrying velocity in inclined gas wells[J]. Petroleum Exploration and Development, 2021, 48(5):1053-1060. doi:10.11698/PED.2021.02.17 [9] 王琦,李颖川,王志彬,等. 水平气井连续携液实验研究及模型评价[J]. 西南石油大学学报(自然科学版),2014,36(3):139-145. doi:10.11885/j.issn.1674-5086.2014.01.22.01 WANG Qi, LI Yingchuan, WANG Zhibin, et al. Experimental study and model evaluation on continuous liquid removal in horizontal gas well[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2014, 36(3):139-145. doi:10.11885/j.issn.1674-5086.2014.01.22.01 [10] 刘永辉,艾先婷,罗程程,等. 预测水平井携液临界气流速的新模型[J]. 深圳大学学报(理工版),2018,35(6):551-557. doi:10.3724/SP.J.1249.2018.06551 LIU Yonghui, AI Xianting, LUO Chengcheng, et al. A new model for predicting critical gas velocity of liquid loading in horizontal well[J]. Journal of Shenzhen University(Science & Engineering), 2018, 35(6):551-557. doi:10.3724/SP.J.1249.2018.06551 [11] 王其伟. 多级孔板提高井筒气体携液能力实验研究[J]. 西南石油大学学报(自然科学版),2020,42(1):78-83. doi:10.11885/j.issn.1674-5086.2018.07.24.01 WANG Qiwei. An experimental study on improving the liquid-carrying capacity of wellbore gas by a multi-stage orifice[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2020, 42(1):78-83. doi:10.11885/j.issn.1674-5086.2018.07.24.01 [12] TURNER R G, HUBBARD M G, DUKLER A E. Analysis and prediction of minimum flow rate for the continuous removal of liquid from gas wells[J]. Journal of Petroleum Technology, 1969, 21(11):1475-1482. doi:10.2118/2198-PA [13] COLEMAN S B, CLAY H B, MCCURDY D G, et al. A new look at predicting gas-well load-up[J]. Journal of Petroleum Technology, 1991, 43(3):329-333. doi:10.2118/20280-PA [14] NOSSEIR M A, DARWICH T A, SAYYOUH M H, SALLALY M E. A new approach for accurate prediction of loading in gas wells under different flowing conditions[J]. SPE Production & Facilities, 1997, 15(4):241-246. doi:10.2118/66540-PA [15] 李闽,郭平,谭光天. 气井携液新观点[J]. 石油勘探与开发,2001,28(5):105-106. doi:10.3321/j.issn:1000-0747.2001.05.031 LI Min, GUO Ping, TAN Guangtian. New view of gas well carrying liquid[J]. Petroleum Exploration and Development, 2001, 28(5):105-106. doi:10.3321/j.issn:1000-0747.2001.05.031 [16] GUO B, GHALAMBOR A, XU C. A systematic approach to predicting liquid loading in gas wells[J]. SPE Production & Operations, 2006, 21(1):81-88. doi:10.2118/94081-PA [17] 王毅忠,刘庆文. 计算气井最小携液临界流量的新方法[J]. 大庆石油地质与开发,2007,26(6):82-85. doi:10.3969/j.issn.1000-3754.2007.06.021 WANG Yizhong, LIU Qingwen. A new method to calculate the minimum critical liquids carrying flow rate for gas wells[J]. Petroleum Geology & Oilfield Development in Daqing, 2007, 26(6):82-85. doi:10.3969/j.issn.1000-3754.2007.06.021 [18] ZHOU D, YUSN H. New model for gas well loading prediction[C]. SPE 120580-MS, 2009. doi:10.2118/120580-MS [19] VANT WESTEND J M C, KEMP H K, BELT R J, et al. On the role of droplets in cocurrent annular and churn-annular pipe flow[J]. International Journal of Multiphase Flow, 2007, 33(6):595-615. doi:10.1016/j.ijmultiphaseflow.2006.12.006 [20] LIU Y H, LUO C C, ZHANG L H, et al. Experimental and modeling studies on the prediction of liquid loading onset in gas wells[J]. Journal of Natural Gas Science and Engineering, 2018, 57:349-358. doi:10.1016/j.jngse.2018.07.023 [21] 陈德春,姚亚,韩昊,等. 定向气井临界携液流量预测新模型[J]. 天然气工业,2016,36(6):40-44. doi:10.3787/j.issn.1000-0976.2016.06.006 CHEN Dechun, YAO Ya, HAN Hao, et al. A new prediction model for critical liquid-carrying flow rate of directional gas wells[J]. Natural Gas Industry, 2016, 36(6):40-44. doi:10.3787/j.issn.1000-0976.2016.06.006 [22] BARNEA D. Transition from annular flow and from dispersed bubble flow-unified models for the whole range of pipe inclinations[J]. International Journal of Multiphase Flow, 1986, 12(5):733-744. doi:10.1016/0301-9322(86)90048-0 [23] ZHANG H Q, WANG Q, SARICA C, et al. Unified model for gas-liquid pipe flow via slug dynamics-Part 1:Model development[J]. Journal of Energy Resources and Technology, 2003, 125(4):266-273. doi:10.1115/1.1615246 [24] 肖高棉,李颖川,喻欣. 气藏水平井连续携液理论与实验[J]. 西南石油大学学报(自然科学版),2010,32(3):122-126. doi:10.3863/j.issn.1674-5086.2010.03.023 XIAO Gaomian, LI Yingchuan, YU Xin. Theory and experiment research on the liquid continuous removal of horizontal gas well[J]. Journal of Southwest Petroleum University(Science& Technology Edition), 2010, 32(3):122-126. doi:10.3863/j.issn.1674-5086.2010.03.023 [25] BELFROID S, SCHIFERLI W, ALBERTS G, et al. Predicting onset and dynamic behavior of liquid loading gas wells[C]. SPE 115567-MS, 2008. doi:10.2118/115567-MS [26] WANG Z B, GUO L J, ZHU S Y, et al. Prediction of the critical gas velocity of liquid unloading in horizontal gas wells[C]. SPE 189439-PA, 2018. doi:10.2118/189439-PA [27] FAN Y, CEM S. A novel approach for system instability prediction using nodal analysis[C]. SPE 196134-MS, 2019. doi:10.2118/196134-MS [28] 赵哲军,刘通,许剑,等. 气井稳定携液之我见[J]. 天然气工业,2015,35(6):59-63. doi:10.3787/j.issn.1000-0976.2015.06.008 ZHAO Zhejun, LIU Tong, XU Jian, et al. Stable fluid-carrying capacity of gas wells[J]. Natural Gas Industry, 2015, 35(6):59-63. doi:10.3787/j.issn.1000-0976.2015.06.008 [29] WALLIS G B. One-dimensional two-phase flow[M]. 1st Ed. New York:McGraw-Hill, 1969. |