[1] TANG G Q, MORROW N R. Effect of temperature, salinity and oil composition on wetting behavior and oil recovery by waterflooding[J]. Oil Field, 1996, 12: 45-60. [2] HUANG Changwu. Top 10 scientific and technological developments in petroleum in 2014[J]. Petroleum Exploration and Development, 2015, 42(5): 1. 黄昌武. 2014年石油十大科技进展[J]. 石油勘探与开发, 2015, 42(5): 1. [3] WEBB K J, BLACK C, AL-AJEEL H. Low salinity oil recovery — log-inject-log[C]. SPE 81460-MS, 2003. doi: 10.2118/81460MS [4] MCGUIRE P L, CHATHAM J R, PASKVAN F K, et al. Low salinity oil recovery: An exciting new EOR opportunity for Alaska's North Slope[C]. SPE 93903-MS 2005. doi: 10.2118/93903MS [5] SECCOMBE J, LAGER A, JERAULD G, et al. Demonstration of low-salinity EOR at interwell scale, Endicott Field, Alaska[C]. SPE 129692-MS, 2010. doi: 10.2118/129692MS [6] SECCOMBE J C, LAGER A, WEBB K J, et al. Improving wateflood recovery: Losaltm EOR field evaluation[C]. SPE 113480-MS, 2008. doi: 10.2118/113480MS [7] VLEDDER P, GONZALEZ I, FONSECA J C, et al. Low salinity water flooding: proof of wettability alteration on a field wide scale[C]. SPE 129564-MS, 2010. doi: 10.2118/129564MS [8] AKHMETGAREEV V, KHISAMOV R. 40 years of low-salinity waterflooding in Pervomaiskoye Field, Russia: Incremental oil[C]. SPE 174182-MS, 2015. doi: 10.2118/174182MS [9] ZHANG Chengming, QI Meng, YANG Yumei, et al. Study on reservoir adaptability analysis and oil displacement effect evaluation of ion water flooding technology[J]. Applied Energy Technology, 2019(2): 11-14. doi: 10.3969/j.issn.10093230.2019.02.004 张成明, 齐梦, 杨玉梅, 等. 离子水驱技术油藏适应性分析及驱油效果评价研究[J]. 应用能源技术, 2019(2): 11-14. doi: 10.3969/j.issn.10093230.2019.02.004 [10] FOGDEN A, KUMAR M, MORROW N R, et al. Mobilization of fine particles during flooding of sandstones and possible relations to enhanced oil recovery[J]. Energy | Fuels, 2011, 25(4): 237-242. doi: 10.1021/ef101572n [11] TANG G Q, MORROW N R. Influence of brine composition and fines migration on crude oil/brine/rock interactions and oil recovery[J]. Journal of Petroleum Science | Engineering, 1999, 24(2): 99-111. doi: 10.1016/S09204105(99)000340 [12] AUSTAD T, REZAEIDOUST A, PUNTERVOLD T. Chemical mechanism of low salinity water flooding in sandstone reservoirs[C]. SPE 129767-MS, 2010. doi: 10.2118/129767MS [13] LAGER A, WEBB K J, BLACK C J J, et al. Low salinity oil recovery — An experimental investigation[J]. Petrophysics, 2008, 49(1): 28-35. doi: 10.1007/s1218200800144 [14] LIGTHELM DJ, GRONSVELD J, HOFMAN J, et al. Novel waterflooding strategy by manipulation of injection brine composition[C]. SPE 119835-MS, 2009. doi: 10.2118/119835MS [15] LEE S, WEBB K, COLLINS I, et al. Low salinity oil recovery: Increasing understanding of the underlying mechanisms[C]. SPE 129722-MS, 2010. doi: 10.2118/129722MS [16] VIJAPURAPU C S, RAO D N, KUN L. The effect of rock surface characteristics on reservoir wettability[C]. SPE 75211-MS, 2002. doi: 10.2523/75211MS [17] BUCKLEY, JILL S. Mechanisms and consequences of wettability alteration by crude oils[D]. Edinburg: Heriot-Watt University, 1996. [18] KASHIRI R, KALANTARIASL A, PARSAEI R, et al. Experimental study of the effect of clay and oil polarity on oil recovery by low salinity water flooding using glass micromodel[J]. Natural Resources Research, 2021, 30(5): 3695-3716. doi: 10.1007/S11053021098777 [19] MYINT P C, FIROOZABADI A. Thin liquid films in improved oil recovery from low-salinity brine[J]. Current Opinion in Colloid | Interface Science, 2015, 20(2): 105-114. doi: 10.1016/j.cocis.2015.03.002 [20] XIE Quan, LIU Yuzhang, WU Jiazhong, et al. Ions tuning water flooding experiments and interpretation by thermodynamics of wettability[J]. Journal of Petroleum Science | Engineering, 2014, 124: 350-358. doi: 10.1016/j.petrol.2014.07.015 [21] DAI Jinyou, LI Jianting, REN Qianying, et al. Microscopic characteristics of Chang 8 low permeability tight reservoir in Xifeng Oilfield[J]. Science Technology and Engineering, 2019, 19(16): 118-125. doi: 10.3969/j.issn.1671-1815.2019.16.017 代金友, 李建霆, 任茜莹, 等. 西峰油田长8低渗致密储层微观特征[J]. 科学技术与工程, 2019, 19(16): 118-125. doi: 10.3969/j.issn.1671-1815.2019.16.017 [22] MATTHIESEN J, BOVET N, HILNER E, et al. How naturally adsorbed material on minerals affects low salinity enhanced oil recovery[J]. Energy | Fuels, 2014, 28(8): 4849-4858. doi: 10.1021/ef500218x [23] SCHEMBRE J M. Temperature, surface forces, wettability and their relationship to relative permeability of porous media[D]. Stanford: Stanford University, 2004. [24] TAKAHASHI S. Water imbibition, electrical surface forces, and wettability of low permeability fractured porous media[D]. Stanford: Stanford University, 2009. [25] WANG Xiao, LIU Wanfa, SHI Leiting, et al. A comprehensive insight on the impact of individual ions on engineered waterflood: With already strongly water-wet sandstone[J]. Journal of Petroleum Science and Engineering, 2021, 207: 109153. doi: 10.1016/J.PETROL.2021.109153 [26] ZENG Lingping, LU Yunhu, AL Maskari N S, et al. Interpreting micromechanics of fluid-shale interactions with geochemical modelling and disjoining pressure: Implications for calcite-rich and quartz-rich shales[J]. Journal of Molecular Liquids, 2020, 319: 114117. doi: 10.1016/j.molliq.2020.114117 [27] HIRASAKI G. Wettability: Fundamentals and surface forces[C]. SPE 17367-PA, 1991. doi: 10.2118/17367PA [28] TAKAHASHI S, KOVSCEK A R. Wettability estimation of low-permeability, siliceous shale using surface forces[J]. Journal of Petroleum Science and Engineering, 2010, 75(1): 33-43. doi: 10.1016/j.petrol.2010.10.008 [29] AMIRI S, GANDOMKAR A. Influence of electrical surface charges on thermodynamics of wettability during low salinity water flooding on limestone reservoirs[J]. Journal of Molecular Liquids, 2019, 277: 132-141. doi: 10.1016/j.molliq.2018.12.069 [30] YU Danfeng, YANG Hui, WANG Hui, et al. Interactions between colloidal particles in the presence of an ultrahighly charged amphiphilic polyelectrolyte[J]. Langmuir, 2014, 30(48): 14512-14521. doi: 10.1021/la503033k [31] ALSHAKHS M J, KOVSCEK A R. Understanding the role of brine ionic composition on oil recovery by assessment of wettability from colloidal forces[J]. Advances in Colloid and Interface Science, 2016, 233: 126-138. doi:10.1016/j.cis.2015.08.004 |