西南石油大学学报(自然科学版) ›› 2023, Vol. 45 ›› Issue (1): 55-70.DOI: 10.11885/j.issn.1674-5086.2022.04.27.03
张辰君1, 金旭1, 袁彬2, 张蕾3, 郑少婧4
收稿日期:
2022-04-27
发布日期:
2023-02-24
通讯作者:
金旭,E-mail:jinxu@petrochina.com.cn
作者简介:
张辰君,1997年生,女,汉族,山东泰安人,工程师,硕士,主要从事油气田开发与油田化学等方面的研究工作。E-mail:zcj0911@petrochina.com.cn基金资助:
ZHANG Chenjun1, JIN Xu1, YUAN Bin2, ZHANG Lei3, ZHENG Shaojing4
Received:
2022-04-27
Published:
2023-02-24
摘要: 系统总结了国内外已开展的纳米驱油材料研究进展,分类阐述了纳米二氧化硅、纳米金属氧化物、聚合物纳米微球以及碳纳米材料等在提高采收率中的应用效果;重点解析了现有纳米驱油材料的理化性能,及其在储层多孔介质中的驱油机理,包括纳米尺寸效应、润湿反转、结构分离压力和流度比改善等作用机制;展望了优势显著的纳米驱油材料在中国高含水、低渗透、致密油及页岩油等油藏类型中的应用潜力;指出纳米驱油材料在石油开发过程中所面临有关测试方法、数模准确性、材料多功能性、经济性及规模化生产等方面的科研难点及攻关方向,为未来纳米驱油材料提高采收率在更多领域的规模应用提供了理论基础和实验依据。
中图分类号:
张辰君, 金旭, 袁彬, 张蕾, 郑少婧. 纳米驱油材料提高采收率研究进展、挑战及前景[J]. 西南石油大学学报(自然科学版), 2023, 45(1): 55-70.
ZHANG Chenjun, JIN Xu, YUAN Bin, ZHANG Lei, ZHENG Shaojing. Research Progress, Challenge and Prospect of Nanoscale Oil-displacing Materials for Enhanced Oil Recovery[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2023, 45(1): 55-70.
[1] 国家统计局. 中华人民共和国2021年国民经济和社会发展统计公报[EB/OL].[2022-03-28]. http://www.stats.gov.cn/xxgk/sjfb/zxfb2020/202202/t20220228_1827971.html. National Bureau of Statistics. Statistical communique of the People's Republic of China on national economic and social development in 2021[EB/OL].[2022-03-28]. http://www.stats.gov.cn/xxgk/sjfb/zxfb2020/202202/t20220228_1827971.html. [2] 刘合,金旭,丁彬. 纳米技术在石油勘探开发领域的应用[J]. 石油勘探与开发,2016,43(6):1014-1021. doi:10.11698/PED.2016.06.20 LIU He, JIN Xu, DING Bin. Application of nanotechnology in petroleum exploration and development[J]. Petroleum Exploration and Development, 2016, 43(6):1014-1021. doi:10.11698/PED.2016.06.20 [3] 雷群,罗健辉,彭宝亮,等. 纳米驱油剂扩大水驱波及体积机理[J]. 石油勘探与开发,2019,46(5):937-942. doi:10.11698/PED.-2019.05.12 LEI Qun, LUO Jianhui, PENG Baoliang, et al. Mechanism of expanding swept volume by nano-sized oil-displacement agent[J]. Petroleum Exploration and Development, 2019, 46(5):937-942. doi:10.11698/PED.2019.05.12 [4] MADHAN A, GUO Kun, YU Zhixin. A state-of-the-art review of nanoparticles application in petroleum with a focus on enhanced oil recovery[J]. Applied Sciences, 2018, 8(6):871. doi:10.3390/app8060871 [5] RAFATI R, SMITH S R, HADDAD A S, et al. Effect of nanoparticles on the modifications of drilling fluids properties:A review of recent advances[J]. Journal of Petroleum Science and Engineering, 2018, 161:61-76. doi:10.1016/j.petrol.2017.11.067 [6] 金旭,李国欣,孟思炜,等. 陆相页岩油可动用性微观综合评价[J]. 石油勘探与开发,2021,48(1):222-232. doi:10.11698/PED.2021.01.21 JIN Xu, LI Guoxin, MENG Siwei, et al. Microscale comprehensive evaluation of continental shale oil recoverability[J]. Petroleum Exploration and Development, 2021, 48(1):222-232. doi:10.11698/PED.2021.01.21 [7] ZHANG Chenjun, JIN Xu, TAO Jiaping, et al. Comparison of nanomaterials for enhanced oil recovery in tight sandstone reservoir[J]. Frontiers in Earth Science, 2021, 9:746071. doi:10.3389/feart.2021.746071 [8] FLETCHER A, DAVIS J. How EOR can be transformed by nanotechnology[C]. SPE 129531-MS, 2010. doi:10.2118/129531-MS [9] UDOH T H. Improved insight on the application of nanoparticles in enhanced oil recovery process[J]. Scientific African, 2021, 13:e00873. doi:10.1016/j.sciaf.2021.e00873 [10] 丁彬,熊春明,耿向飞,等. 致密油纳米流体增渗驱油体系特征及提高采收率机理[J]. 石油勘探与开发,2020,47(4):756-764. doi:10.11698/PED.2020.04.12 DING Bin, XIONG Chunming, GENG Xiangfei, et al. Characteristics and EOR mechanisms of nanofluids permeation flooding for tight oil[J]. Petroleum Exploration and Development, 2020, 47(4):756-764. doi:10.11698/PED.2020.04.12 [11] GIRALDO J, BENJUMEA P, LOPERA S, et al. Wettability alteration of sandstone cores by alumina-based nanofluids[J]. Energy & Fuels, 2013, 27(7):3659-3665. doi:10.1021/ef4002956 [12] NGO I, SASAKI K, NGUELE R, et al. Formation damage induced by water-based alumina nanofluids during enhanced oil recovery:Influence of postflush salinity[J]. ACS Omega, 2020, 5(42):27103-27112. doi:10.1021/acsomega.0c02473 [13] OGOLO N A, OLAFUYI O A, ONYEKONWU M O. Enhanced oil recovery using nanoparticles[C]. SPE 160847-MS, 2012. doi:10.2118/160847-MS [14] KARIMI A, FAKHROUEIAN Z, BAHRAMIAN A, et al. Wettability alteration in carbonates using zirconium oxide nanofluids:EOR implications[J]. Energy & Fuels, 2012, 26(2):1028-1036. doi:10.1021/ef201475u [15] MOSLAN M S, SULAIMAN W R W, ISMAIL A R, et al. Wettability alteration of dolomite rock using nanofluids for enhanced oil recovery[J]. Materials Science Forum, 2016, 864:194-198. doi:10.4028/www.scientific.net/MSF.864.194 [16] EHTESABI H, AHADIAN M M, TAGHIKHANI V, et al. Enhanced heavy oil recovery in sandstone cores using TiO2 nanofluids[J]. Energy & Fuels, 2014, 28(1):423-430. doi:10.1021/ef401338c [17] EHTESABI H, AHADIAN M M, TAGHIKHANI V. Enhanced heavy oil recovery using TiO2 nanoparticles:Investigation of deposition during transport in core plug[J]. Energy & Fuels, 2015, 29(1):1-8. doi:10.1021/ef5015605 [18] NASSAR N N, HASSAN A, VITALE G. Comparing kinetics and mechanism of adsorption and thermo-oxidative decomposition of Athabasca asphaltenes onto TiO2, ZrO2, and CeO2 nanoparticles[J]. Applied Catalysis A:General, 2014, 484:161-171. doi:10.1016/j.apcata.2014.07.017 [19] HOSSEINPOUR N, KHODADADI A A, BAHRAMIAN A, et al. Asphaltene adsorption onto acidic/basic metal oxide nanoparticles toward in situ upgrading of reservoir oils by nanotechnology[J]. Langmuir, 2013, 29(46):14135-14146. doi:10.1021/la402979h [20] HAROUN M, HASSAN S AI, ANSARI A, et al. Smart Nano-EOR process for Abu Dhabi carbonate reservoirs[C]. SPE 162386-MS, 2012. doi:10.2118/162386-MS [21] YI S, BABADAGLI T, LI H A. Use of nickel nanoparticles for promoting aquathermolysis reaction during cyclic steam stimulation[C]. SPE 186102-PA, 2017. doi:10.2118/186102-PA [22] 黄佳,江航,赵长虹,等. 复配纳米催化剂在稠油降黏中的应用及其机理[J]. 中国粉体技术,2020,26(1):68-74. doi:10.13732/j.issn.1008-5548.2020.01.011 HUANG Jia, JIANG Hang, ZHAO Changhong, et al. Effects and mechanism of combined nano-catalysts on viscosity reduction of heavy oil[J]. China Powder Science and Technology, 2020, 26(1):68-74. doi:10.13732/j.issn.1008-5548.2020.01.011 [23] DAI Caili, WANG Xinke, LI Yuyang, et al. Spontaneous imbibition investigation of self-dispersing silica nanofluids for enhanced oil recovery in low-permeability cores[J]. Energy & Fuels, 2017, 31(3):2663-2668. doi:10.1021/acs.energyfuels.6b03244 [24] KUMAR INTURI S, RANJAN DASH G, KODAVATY J. Role of silica Nano particles in altering rheological properties of drilling fluid in enhanced oil recovery[J]. Materials Today:Proceedings, 2019, 17(4):354-361. doi:10.1016/j.matpr.2019.06.442 [25] RAGAB A M, HANNORA A E. An experimental investigation of silica nano particles for enhanced oil recovery applications[C]. SPE 175829-MS, 2015. doi:10.2118/175829-MS [26] JU Binshan, FAN Tailiang, MA Mingxue. Enhanced oil recovery by flooding with hydrophilic nanoparticles[J]. China Particuology, 2006, 4(1):41-46. doi:10.1016/S1672-2515(07)60232-2 [27] PILLAI P, SAW R K, SINGH R, et al. Effect of synthesized lysine-grafted silica nanoparticle on surfactant stabilized O/W emulsion stability:Application in enhanced oil recovery[J]. Journal of Petroleum Science and Engineering, 2019, 177:861-871. doi:10.1016/j.petrol.2019.03.007 [28] ZHANG T, ROBERTS M, BRYANT S L, et al. Foams and emulsions stabilized with nanoparticles for potential conformance control applications[C]. SPE 121744-MS, 2009. doi:10.2118/121744-MS [29] ZHANG T, DAVIDSON D, BRYANT S L, et al. Nanoparticle-stabilized emulsions for applications in enhanced oil recovery[C]. SPE 129885-MS, 2010. doi:10.2118/129885-MS [30] AFIFI H R, MOHAMMADI S, DERAZI A M, et al. Enhancement of smart water-based foam characteristics by SiO2 nanoparticles for EOR applications[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 627:127143. doi:10.1016/j.colsurfa.2021.127143 [31] SUN Q, LI Z, WANG J, et al. Aqueous foam stabilized by partially hydrophobic nanoparticles in the presence of surfactant[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2015, 471:54-64. doi:10.1016/j.colsurfa.2015.02.007 [32] YEKEEN N, MANAN M A, IDRIS A K, et al. Experimental investigation of minimization in surfactant adsorption and improvement in surfactant-foam stability in presence of silicon dioxide and aluminum oxide nanoparticles[J]. Journal of Petroleum Science & Engineering, 2017, 159:115-134. doi:10.1016/j.petrol.2017.09.021 [33] GUO F, ARYANA S. An experimental investigation of nanoparticle-stabilized CO2 foam used in enhanced oil recovery[J]. Fuel, 2016, 186(15):430-442. doi:10.1016/j.fuel.2016.08.058 [34] ZHANG Yusong, LIU Qi, YE Hang, et al. Nanoparticles as foam stabilizer:Mechanism, control parameters and application in foam flooding for enhanced oil recovery[J]. Journal of Petroleum Science and Engineering, 2021, 202:108561. doi:10.1016/j.petrol.2021.108561 [35] LI S, YANG K, LI Z, et al. Properties of CO2 foam stabilized by hydrophilic nanoparticles and nonionic surfactants[J]. Energy & Fuels, 2019, 33(6):5043-5054. doi:10.1021/acs.energyfuels.9b00773 [36] TIAN Qinyu, WANG Lushan, TANG Yanyan, et al. Research and application of nano polymer microspheres diversion technique of deep fluid[C]. SPE 156999-MS, 2012. doi:10.2118/156999-MS [37] 陈渊,孙玉青,李飞鹏,等. 纳米微球深部调驱技术在河南油田的应用[J]. 石油钻采工艺,2012,34(3):87-90. doi:10.3969/j.issn.1000-7393.2012.03.021 CHEN Yuan, SUN Yuqing, LI Feipeng, et al. Application of nanosphere deep profile control and displacement technology in He'nan Oilfield[J]. Oil Drilling and Production Technology, 2012, 34(3):87-90. doi:10.3969/j.issn.1000-7393.2012.03.021 [38] 吴天江,郑明科,周志平,等. 低渗透油藏纳米微球调驱剂封堵性评价新方法[J]. 断块油气田,2018,25(4):498-501. doi:10.6056/dkyqt201804019 WU Tianjiang, ZHENG Mingke, ZHOU Zhiping, et at. New method for plugging performance evaluation of polymeric nanospheres in low permeability reservoir[J]. Fault-Block Oil and Gas Field, 2018, 25(4):498-501. doi:10.6056/dkyqt201804019 [39] 路建萍,沈燕宾,王佳,等. 纳米微球技术在油田领域的研究进展及应用[J]. 应用化工,2020,49(3):768-772. doi:10.16581/j.cnki.issn1671-3206.20200110.010 LU Jianping, SHEN Yanbin, WANG Jia, et al. Research progress and application of nanosphere technology in oilfield[J]. Applied Chemical Industry, 2020, 49(3):768-772. doi:10.16581/j.cnki.issn1671-3206.20200110.010 [40] 李翔,瞿瑾,鞠野,等. 纳米聚合物微球的封堵性及驱油性能[J]. 化学工业与工程,2021,38(3):57-63. doi:10.13353/j.issn.1004.9533.20201006 LI Xiang, QU Jin, JU Ye, et al. Plugging property and oil displacement performance of nanoscale polymer microspheres[J]. Chemical Industry and Engineering, 2021, 38(3):57-63. doi:10.13353/j.issn.1004.9533.20201006 [41] HENDRANINGRAT L, ZHANG J. Polymeric nanospheres as a displacement fluid in enhanced oil recovery[J]. Applied Nanoscience, 2015, 5(8):1009-1016. doi:10.1007/s13204-014-0399-x [42] 孟令韬,王彦玲,许宁,等. 一种低渗油藏深部调驱用聚合物纳米微球的制备与性能研究[J]. 应用化工,2021,50(7):1757-1760. doi:10.3969/j.issn.1671-3206.2021.07.003 MENG Lingtao, WANG Yanling, XU Ning, et al. Study on preparation and performance of polymer nanospheres for deep profile control and flooding in low permeability reservoir[J]. Applied Chemical Industry, 2021, 50(7):1757-1760. doi:10.3969/j.issn.1671-3206.2021.07.003 [43] WANG Lei, ZHANG Guicai, GE Jijiang, et al. Preparation of microgel nanospheres and their application in EOR[C]. SPE 130357-MS, 2010. doi:10.2118/130357-MS [44] 张勇. 海上Q油田聚合物微球在线深部调剖技术研究与应用[J]. 石油化工应用,2016,35(8):19-24. doi:10.3969/j.issn.1673-5285.2016.08.005 ZHANG Yong. The Bohai offshore oilfield polymer microspheres online deep profile control technology research and application[J]. Petrochemical Industry Application, 2016, 35(8):19-24. doi:10.3969/j.issn.1673-5285.2016.08.005 [45] ZHAO Guang, WANG Xingkun, DAI Caili, et al. Investigation of a novel enhanced stabilized foam:Nano-graphite stabilized foam[J]. Journal of Molecular Liquids, 2021, 343:117466. doi:10.1016/j.molliq.2021.117466 [46] XUAN Yang, JIANG Guancheng, LI Yinging. Nanographite oxide as ultrastrong fluid-loss-control additive in water-based drilling fluids[J]. Journal of Dispersion Science and Technology, 2014, 35(10):1386-1392. doi:10.1080/01932691.2013.858350 [47] KANJ M Y, KOSYNKIN D V. Oil industry first field trial of inter-well reservoir nanoagent tracers[J]. Proceedings of SPIE:The International Society for Optical Engineering, 2015, 9467(10):94671D. doi:10.1117/12.2179249 [48] TAJIK S, SHAHRABADI A, RASHIDI A, et al. Application of functionalized silica-graphene nanohybrid for the enhanced oil recovery performance[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2018, 556:253-265. doi:10.1016/j.colsurfa.2018.08.029 [49] RADNIA H, RASHIDI A, SOLAIMANY NAZAR A R, et al. A novel nanofluid based on sulfonated graphene for enhanced oil recovery[J]. Journal of Molecular Liquids, 2018, 271:795-806. doi:10.1016/j.molliq.2018.09.070 [50] 魏兵,田庆涛,毛润雪,等. 纳米纤维素材料在油气田开发中的应用与展望[J]. 油气地质与采收率,2020,27(2):98-104. doi:10.13673/j.cnki.cn37-1359/te.2020.02.012 WEI Bing, TIAN Qingtao, MAO Runxue, et al. Application and prospect of nano-cellulosic materials in the development of oil and gas field[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(2):98-104. doi:10.13673/j.cnki.cn37-1359/te.2020.02.012 [51] AADLAND R C, JAKOBSEN T D, HEGGSET E B, et al. High-temperature core flood investigation of nanocellulose as a green additive for enhanced oil recovery[J]. Nanomaterials, 2019, 9(5):665. doi:10.3390/nano9050665 [52] MOLNES S N, MAMONOV A, PASO K G, et al. Investigation of a new application for cellulose nanocrystals:A study of the enhanced oil recovery potential by use of a green additive[J]. Cellulose, 2018, 25:2289-2301. doi:10.1007/s10570-018-1715-5 [53] SILJE N M, IVAN P T, SKULE S, et al. Sandstone injectivity and salt stability of cellulose nanocrystals(CNC) dispersions:Premises for use of CNC in enhanced oil recovery[J]. Industrial Crops & Products, 2016, 93:152-160. doi:10.1016/j.indcrop.2016.03.019 [54] PARAJULI S, ALAZZAM O, WANG M, et al. Surface properties of cellulose nanocrystal stabilized crude oil emulsions and their effect on petroleum biodegradation[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 596:124705. doi:10.1016/j.colsurfa.2020.124705 [55] GESTRANIUS M, STENIUS P, KONTTURI E, et al. Phase behaviour and droplet size of oil-in-water Pickering emulsions stabilised with plant-derived nanocellulosic materials[J]. Colloid and Surface A:Physicochemical and Engineering Aspects, 2017, 519:60-70. doi:10.1016/j.colsurfa.2016.04.025 [56] CHANDRAN K. Multiwall carbon nanotubes (MWNT) fluid in EOR using core flooding method under the presence of electromagnetic waves[C]. Seri Iskandar:Universiti Teknologi Petronas, 2013. [57] 罗健辉,杨海恩,肖沛文,等. 纳米驱油技术理论与实践[J]. 油田化学,2020,37(4):669-674. doi:10.19346/j.cnki.1000-4092.2020.04.018 LUO Jianhui, YANG Haien, XIAO Peiwen, et al. Nanofluid flooding technology:Theory and practice[J]. Oilfield Chemistry, 2020, 37(4):669-674. doi:10.19346/j.cnki.1000-4092.2020.04.018 [58] SUN Xiaofei, ZHANG Yanyu, CHEN Guangpeng, et al. Application of nanoparticles in enhanced oil recovery:A critical review of recent progress[J]. Energies, Multidisciplinary Digital Publishing Institute, 2017, 10(3):345. doi:10.3390/en10030345 [59] HASHEMI R, NASSAR N N, ALMAO P P. Enhanced heavy oil recovery by in situ prepared ultradispersed multimetallic nanoparticles:A study of hot fluid flooding for athabasca bitumen recovery[J]. Energy & Fuels, 2013, 27(4):2194-2201. doi:10.1021/ef3020537 [60] HENDRANINGRAT L. A coreflood investigation of nanofluid enhanced oil recovery[J]. Journal of Petroleum Science and Engineering, 2013, 11:128-138. doi:10.1016/j.petrol.2013.07.003 [61] PENG Baoliang, ZHANG Lecheng, LUO Jianhui, et al. A review of nanomaterials for nanofluid enhanced oil recovery[J]. RSC Advances, 2017, 7(51):32246-32254. doi:10.1039/C7RA05592G [62] JU Binshan, FAN Tailiang. Experimental study and mathematical model of nanoparticle transport in porous media[J]. Powder Technology, 2009, 192(2):195-202. doi:10.1016/j.powtec.2008.12.017 [63] HAMMOND P S, UNSAL E. Spontaneous imbibition of surfactant solution into an oil-wet capillary:Wettability restoration by surfactant-contaminant complexation[J]. Langmuir, 2011, 27(8):4412-4429. doi:10.1021/la1048503 [64] ROUSTAEI A, MOGHADASI J, BAGHERZADEH H, et al. An Experimental investigation of polysilicon nanoparticles' recovery efficiencies through changes in interfacial tension and wettability alteration[C]. SPE 156976-MS, 2012. doi:10.2118/156976-MS [65] RAGAB A M S, HANNORA A E. A comparative investigation of nano particle effects for improved oil recovery:Experimental work[C]. SPE 175395-MS, 2015. doi:10.2118/175395-MS [66] ALOMAIR O A, MATAR K M, ALSAEED Y H. Experimental study of enhanced-heavy-oil recovery in berea sandstone cores by use of nanofluids applications[C]. SPE 171539-PA, 2015. doi:10.2118/171539-PA [67] THOMAS S. Enhanced oil recovery:An overview[J]. Oil & Gas Science and Technology-Revue de l IFP, 2008, 63(1):9-19. doi:10.2516/ogst:2007060 [68] SHENG J J. Modern chemical enhanced oil recovery:Theory and practice[M]. Amsterdam:Elsevier Inc, 2011. doi:10.1016/C2009-0-20241-8 [69] MOGHADAM T F, AZIZIAN S. Effect of ZnO nanoparticles on the interfacial behavior of anionic surfactant at liquid/liquid interfaces[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2014, 457:333-339. doi:10.1016/j.colsurfa.2014.06.009 [70] MAHMOUDI S, JAFARI A, JAVADIAN S. Temperature effect on performance of nanoparticle/surfactant flooding in enhanced heavy oil recovery[J]. Petroleum Science, 2019(6):1387-1402. doi:10.1007/s12182-019-00364-6 [71] BASU S, SHARMA M M. Measurement of critical disjoining pressure for dewetting of solid surfaces[J]. Journal of Colloid and Interface Science, 1996, 181(2):443-455. doi:10.1006/jcis.1996.0401 [72] ZHANG H, RAMAKRISHNAN T S, NIKOLOV A, et al. Enhanced oil displacement by nanofluid's structural disjoining pressure in model fractured porous media[J]. Journal of Colloid and Interface Science, 2018, 511:48-56. doi:10.1016/j.jcis.2017.09.067 [73] ZHANG H, NIKOLOV A, WASAN D. Enhanced oil recovery (EOR) using nanoparticle dispersions:Underlying mechanism and imbibition experiments[J]. Energy & Fuels, 2014, 28(5):3002-3009. doi:10.1021/ef500272r [74] WASAN D, NIKOLOV A, KONDIPARTY K. The wetting and spreading of nanofluids on solids:Role of the structural disjoining pressure[J]. Current Opinion in Colloid & Interface Science, 2011, 16(4):344-349. doi:10.1016/j.cocis.2011.02.001 [75] KAO R L, WASAN D T, NIKOLOV A D, et al. Mechanisms of oil removal from a solid surface in the presence of anionic micellar solutions[J]. Colloids & Surfaces, 1988, 34(4):389-398. doi:10.1016/0166-6622(88)80163-X [76] CHENGARA A, NIKOLOV A D, WASAN D T, et al. Spreading of nanofluids driven by the structural disjoining pressure gradient[J]. Journal of Colloid & Interface Science, 2004, 280(1):192-201. doi:10.1016/j.jcis.2004.07.005 [77] MATAR O K, CRASTER R V, SEFIANE K. Dynamic spreading of droplets containing nanoparticles[J]. Physical Review E, 2007, 76:056315. doi:10.1103/PhysRevE.76.056315 [78] SADEGHPOUR A, PIROLT F, GLATTER O. Submicrometer-sized pickering emulsions stabilized by silica nanoparticles with adsorbed oleic acid[J]. Langmuir, 2013, 29(20):6004-6012. doi:10.1021/la4008685 [79] PUERTO M, HIRASAKI G J, MILLER C A, et al. Surfactant systems for EOR in high-temperature, high-salinity environments[C]. SPE 129675-PA, 2012. doi:10.2118/129675-PA [80] SHARMA T, KUMAR G S, CHON B H, et al. Thermal stability of oil-in-water pickering emulsion in the presence of nanoparticle, surfactant and polymer[J]. Journal of Industrial and Engineering Chemistry, 2015, 22:324-334. doi:10.1016/j.jiec.2014.07.026 [81] HENDRANINGRAT L, LI S, OLE TORSÆTER. Effect of some parameters influencing enhanced oil recovery process using silica nanoparticles:An experimental investigation[C]. SPE 165955-MS, 2013. doi:10.2118/165955-MS [82] WORTHEN A J, BAGARIA H G, CHEN Y, et al. Nanoparticle-stabilized carbon dioxide-in-water foams with fine texture[J]. Journal of Colloid & Interface Science, 2013, 391:142-151. doi:10.1016/j.jcis.2012.09.043 [83] 彭宝亮,罗健辉,王平美,等. 纳米材料在油田堵水调剖中的应用进展[J]. 油田化学,2016,33(3):552-556. doi:10.19346/j.cnki.1000-4092.2016.03.035 PENG Baoliang, LUO Jianhui, WANG Pingmei, et al. Application progress of nanomaterials for water plugging and profile control in oilfield[J]. Oilfield Chemistry, 2016, 33(3):552-556. doi:10.19346/j.cnki.1000-4092.2016.03.035 [84] EMRANI A S, NASR-EL-DIN H A. An experimental study of nanoparticle-polymer-stabilized CO2 foam[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2017, 524:17-27. doi:10.1016/j.colsurfa.2017.04.023 [85] SUN Qian, ZHANG Na, LI Zhaomin, et al. Nanoparticle-stabilized foam for effective displacement in porous media and enhanced oil recovery[J]. Energy Technology:Generation Conversion Storage Distribution, 2016, 4(9):1053-1063. doi:10.1002/ente.201600063 [86] EZEUKWU T, THOMAS R L, GUNNEROED T. Fines migration control in high-water-cut nigerian oil wells:Problems and solutions[C]. SPE 39482-MS, 1998. doi:10.2118/39482-MS [87] BEDRIKOVETSKY P, SIQUEIRA F D, FURTADO C A, et al. Modified particle detachment model for colloidal transport in porous media[J]. Transport in Porous Media, 2011, 86(2):353-383. doi:10.1007/s11242-010-9626-4 [88] CIVAN F. Non-isothermal permeability impairment by fines migration and deposition in porous media including dispersive transport[J]. Transport in Porous Media, 2010, 85(1):233-258. doi:10.1007/s11242-010-9557-0 [89] YUAN B, BEDRIKOVETSKY P, HUANG T, et al. Special issue:Formation damage during enhanced gas and liquid recovery[J]. Journal of Natural Gas Science & Engineering, 2016, 36:1051-1054. doi:10.1016/j.jngse.2016.11.019 [90] CIVAN F. Temperature effect on power for particle detachment from pore wall described by an arrhenius-type equation[J]. Transport in Porous Media, 2007, 67(2):329-334. doi:10.1007/s11242-006-9005-3 [91] SARKAR A K, SHARMA M M. Fines migration in two-phase flow[C]. SPE 17437-PA, 1990. doi:10.2118/17437-PA [92] CHENG X K, KAN A T, TOMSON M B. Study of C60 transport in porous media and the effect of sorbed C60 on naphthalene transport[J]. Journal of Materials Research, 2005, 20(12):3244-3254. doi:10.1557/jmr.2005.0402 [93] YU Jianjia, AN Cheng, MO Di, et al. Study of adsorption and transportation behavior of nanoparticles in three different porous media[C]. SPE 153337-MS, 2012. doi:10.2118/153337-MS [94] YUAN B, MOGHANLOO R G, PATTAMASINGH P. Applying method of characteristics to study utilization of nanoparticles to reduce fines migration in deepwater reservoirs[C]. SPE 174192-MS, 2015. doi:10.2118/174192-MS [95] YUAN Bin, WANG Kai. Injectivity improvement by nanofluid preflush during low salinity water flooding[C]. IPTC-18611-MS, 2016. doi:10.2523/IPTC-18611-MS [96] HUANG T, CREWS J B, WILLINGHAM J R. Using nanoparticle technology to control fine migration[C]. SPE 115384-MS, 2008. doi:10.2118/115384-MS [97] HUANG T, CREWS J B, WILLINGHAM J R. Nanoparticles for formation fines fixation and improving performance of surfactant structure fluids[C]. Kuala Lumpur:International Petroleum Technology Conference, 2008. 10.3997/2214- 4609-pdb.148.iptc12414 [98] HUANG T, EVANS B A, CREWS J B, et al. Field case study on formation fines control with nanoparticles in offshore applications[C]. SPE 135088-MS, 2010. doi:10.2118/135088-MS [99] HABIBI A, AHMADI M, POURAFSHARY P, et al. Fines migration control in sandstone formation by improving silica surface zeta potential using a nanoparticle coating process[J]. Energy Sources, 2014, 36(21-24):2376-2382. doi:10.1080/15567036.2011.569836 [100] AHMADI M, HABIBI A, POURAFSHARI P, et al. Zeta potential investigation and mathematical modeling of nanoparticles deposited on the rock surface to reduce fine migration[C]. SPE 142633-MS, 2011. doi:10.2118/142633-MS [101] ASSEF Y, ARAB D, POURAFSHARY P. Application of nanofluid to control fines migration to improve the performance of low salinity water flooding and alkaline flooding[J]. Journal of Petroleum Science and Engineering, 2014, 12:331-340. doi:10.1016/j.petrol.2014.09.023 [102] 侯吉瑞,闻宇晨,屈鸣,等. 纳米材料提高油气采收率技术研究及应用[J]. 特种油气藏,2020,27(6):47-53. doi:10.3969/j.issn.1006-6535.2020.06.006 HOU Jirui, WEN Yuchen, QU Ming, et al. Research and application of nano-materials to enhance oil and gas recovery technology[J]. Special Oil and Gas Reservoirs, 2020, 27(6):47-53. doi:10.3969/j.issn.1006-6535.2020.06.006 [103] 周明辉,孙文杰,李克文. 纳米催化剂辅助超稠油氧化改质实验研究[J]. 中国科学(技术科学),2017,47(2):197-203. doi:10.1360/N092016-00307 ZHOU Minghui, SUN Wenjie, LI Kewen. Experimental research of nano catalyst assisted oxidization upgrading of super heavy oil[J]. Scientia Sinica Technologica, 2017, 47(2):197-203. doi:10.1360/N092016-00307 [104] MONTOYA T, ARGEL B L, NASSAR N N, et al. Kinetics and mechanisms of the catalytic thermal cracking of asphaltenes adsorbed on supported nanoparticles[J]. Petroleum Science, 2016, 13(3):11. doi:10.1007/s12182-016-0100-y [105] WILSON A. Nanoparticle catalysts upgrade heavy oil for continuous-steam-injection recovery[J]. Journal of Petroleum Technology, 2017, 69(3):66-67. doi:10.2118/0317-0066-JPT [106] ISKANDAR F, DWINANTO E, ABDULLAH M, et al. Viscosity reduction of heavy oil using nanocatalyst in aquathermolysis reaction[J]. Powder & Particle, 2016, 33:3-16. doi:10.14356/kona.2016005 [107] GRAY M R, MCCAFFREY W C. Role of chain reactions and olefin formation in cracking, hydroconversion, and coking of petroleum and bitumen fractions[J]. Energy & Fuels, 2002, 16(3):756-766. doi:10.1021/ef010243s [108] HABIB F K, DINER C, STRYKER J M, et al. Suppression of addition reactions during thermal cracking using hydrogen and sulfided iron catalyst[J]. Energy & Fuels, 2013, 27(11):6637-6645. doi:10.1021/ef401904q [109] SHOKRLU H Y, BABADAGLI T. Transportation and interaction of nano and micro size metal particles injected to improve thermal recovery of heavy-oil[C]. SPE 146661-MS, 2011. doi:10.2118/146661-MS [110] JUNAID A S M, RAHMAN M M, ROCHA G, et al. On the role of water in natural-zeolite-catalyzed cracking of athabasca oilsands bitumen[J]. Energy & Fuels, 2014, 28(5):3367-3376. doi:10.1021/ef500532w [111] 袁士义,王强. 中国油田开发主体技术新进展与展望[J]. 石油勘探与开发,2018,45(4):657-668. doi:10.11698/PED.2018.04.11 YUAN Shiyi, WANG Qiang. New progress and prospect of oilfields development technologies in China[J]. Petroleum Exploration and Development, 2018, 45(4):657-668. doi:10.11698/PED.2018.04.11 [112] 袁士义,王强,李军诗,等. 提高采收率技术创新支撑我国原油产量长期稳产[J]. 石油科技论坛,2021,40(3):24-32. doi:10.3969/j.issn.1002-302x.2021.03.003 YUAN Shiyi, WANG Qiang, LI Junshi, et al. EOR technological innovation keeps China's crude oil production stable on long-term basis[J]. Petroleum Science and Technology Forum, 2021, 40(3):24-32. doi:10.3969/j.issn.1002-302x.2021.03.003 [113] 王光付,廖荣凤,李江龙,等. 中国石化低渗透油藏开发状况及前景[J]. 油气地质与采收率,2007,14(3):84-89. doi:10.13673/j.cnki.cn37-1359/te.2007.03.025 WANG Guangfu, LIAO Rongfeng, LI Jianglong, et al. Development status and prospect of low permeability reservoirs in SINOPEC[J]. Petroleum Geology and Recovery Efficiency, 2007, 24(3):84-89. doi:10.13673/j.cnki.cn37-1359/te.2007.03.025 [114] 岳湘安. 提高石油采收率基础[M]. 北京:石油工业出版社, 2007. YUE Xiang'an. Enhanced oil recovery basis[M]. Beijing:Petroleum Industry Press, 2007. [115] 中华人民共和国国家质量监督检验检疫局,中国国家标准化管理委员会.致密油地质评价方法:GB/T 34906-2017[S].北京:中国标准出版社,2017. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Geological evaluation methods for tight oil:GB/T 34906-2017[S]. Beijing:Standards Press of China, 2017. [116] 朱如凯,邹才能,吴松涛,等. 中国陆相致密油形成机理与富集规律[J]. 石油与天然气地质,2019,40(6):1168-1184. doi:10.11743/ogg20190602 ZHU Rukai, ZOU Caineng, WU Songtao, et al. Mechanism for generation and accumulation of continental tight oil in China[J]. Oil and Gas Geology, 2019, 40(6):1168-1184. doi:10.11743/ogg20190602 [117] 邹才能. 非常规油气地质学[M]. 北京:地质出版社, 2014. ZOU Caineng. Unconventional petroleum geology[M]. Beijing:Geological Publishing House, 2014. [118] 邹才能,赵群,王红岩,等. 非常规油气勘探开发理论技术助力我国油气增储上产[J]. 石油科技论坛,2021,40(3):72-79. doi:10.3969/j.issn.1002-302x.2021.03.007 ZOU Caineng, ZHAO Qun, WANG Hongyan, et al. Theory and technology of unconventional oil and gas exploration and development helps China increase oil and gas reserves and production[J]. Petroleum Science and Technology Forum, 2021, 40(3):72-79. doi:10.3969/j.issn.1002-302x.2021.03.007 [119] 国家市场监督管理总局,中国国家标准化管理委员会.页岩油地质评价方法:GB/T 38718-2020[S]. 北京:中国标准出版社,2020. State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Geological evaluation method for shale oil:GB/T 38718-2020[S]. Beijing:Standards Press of China, 2020. [120] 赵文智,胡素云,侯连华,等. 中国陆相页岩油类型、资源潜力及与致密油的边界[J]. 石油勘探与开发,2020,47(1):1-10. doi:10.11698/PED.2020.01.01 ZHAO Wenzhi, HU Suyun, HOU Lianhua, et al. Types and resource potential of continental shale oil in China and its boundary with tight oil[J]. Petroleum Exploration and Development, 2020, 47(1):1-10. doi:10.11698/PED.2020.01.01 [121] 贾承造. 中国石油工业上游科技进展与未来攻关方向[J]. 石油科技论坛,2021,40(3):1-10. doi:10.3969/j.issn.1002-302x.2021.03.001 JIA Chengzao. China's petroleum industrial upstream technological development and its future research areas[J]. Petroleum Science and Technology Forum, 2021, 40(3):1-10. doi:10.3969/j.issn.1002-302x.2021.03.001 [122] 丁瑜,辜思曼,何方舟,等. 纳米材料在水基压裂液中的应用研究进展[J]. 石油化工,2022,51(1):100-106. doi:10.3969/j.issn.1000-8144.2022.01.015 DING Yu, GU Siman, HE Fangzhou, et al. Research progress on application of nanomaterials in water-based fracturing fluids[J]. Petroleum Technology, 2022, 51(1):100-106. doi:10.3969/j.issn.1000-8144.2022.01.015 [123] 刘建坤,蒋廷学,黄静,等. 纳米材料改善压裂液性能及驱油机理研究[J]. 石油钻探技术,2022,50(1):103-111. doi:10.11911/syztjs.2021118 LIU Jiankun, JIANG Tingxue, HUANG Jing, et al. Study on mechanism of the fracturing fluid performance improvement and oil displacement using nanomaterials[J]. Petroleum Drilling Techniques, 2022, 50(1):103-111. doi:10.11911/syztjs.2021118 |
[1] | 周海燕, 张运来, 何逸凡, 缪飞飞. 新型交联聚合物微球调驱性能研究[J]. 西南石油大学学报(自然科学版), 2022, 44(6): 175-182. |
[2] | 许世京, 伍家忠, 陈兴隆, 刘庆杰. 离子匹配精细水驱提高采收率机理研究[J]. 西南石油大学学报(自然科学版), 2022, 44(5): 105-112. |
[3] | 王香增, 高涛, 梁全胜, 党海龙. 低渗致密油藏适度温和注水技术研究与矿场实践[J]. 西南石油大学学报(自然科学版), 2022, 44(4): 62-70. |
[4] | 李华昌, 黎华继, 李峰, 许鑫. 大型高叠置致密砂岩气藏提高采收率技术[J]. 西南石油大学学报(自然科学版), 2022, 44(3): 110-120. |
[5] | 郭彤楼. 川西侏罗系致密砂岩气藏稳产关键技术与展望[J]. 西南石油大学学报(自然科学版), 2022, 44(3): 1-11. |
[6] | 付京, 姚博文, 雷征东, 田野, 吴玉树. 北美超低渗致密油藏提高采收率技术现状[J]. 西南石油大学学报(自然科学版), 2021, 43(5): 166-183. |
[7] | 李浩楠, 宋平, 朱亚婷, 谭龙, 张记刚. 玛湖致密砾岩注氮气驱机理及应用效果评价[J]. 西南石油大学学报(自然科学版), 2021, 43(5): 203-211. |
[8] | 李一波, 何天双, 胡志明, 李亚龙, 蒲万芬. 页岩油藏提高采收率技术及展望[J]. 西南石油大学学报(自然科学版), 2021, 43(3): 101-110. |
[9] | 何金钢, 袁琳. 聚驱后聚表剂“调驱堵压”调整技术研究[J]. 西南石油大学学报(自然科学版), 2021, 43(3): 165-174. |
[10] | 魏兵, 刘江, 张翔, 蒲万芬. 致密油藏提高采收率方法与理论研究进展[J]. 西南石油大学学报(自然科学版), 2021, 43(1): 91-102. |
[11] | 钟仪华, 王淑宁, 罗兰, 杨金莲, 岳永鹏. 用深度学习挖掘油田开发指标预测模型的知识[J]. 西南石油大学学报(自然科学版), 2020, 42(6): 63-74. |
[12] | 李晨曦, 苑志旺, 杨希濮, 卜范青, 赵晓明. 深水浊积水道砂体内部渗流屏障发育规律研究[J]. 西南石油大学学报(自然科学版), 2020, 42(2): 75-84. |
[13] | 张德平, 马锋, 吴雨乐, 董泽华. 用于CO2注气驱的油井缓蚀剂加注工艺优化研究[J]. 西南石油大学学报(自然科学版), 2020, 42(2): 103-109. |
[14] | 李永太, 孔柏岭. 提高三元复合驱现场应用效果的技术途径[J]. 西南石油大学学报(自然科学版), 2019, 41(4): 113-119. |
[15] | 梁萌, 袁海云, 杨英, 杨云博, 蔺江涛. 气体混相驱与最小混相压力测定研究进展[J]. 西南石油大学学报(自然科学版), 2017, 39(5): 101-112. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||