[1] ABBOTT A P, CAPPER G, DAVIES D L, et al. Novel solvent properties of choline chloride/urea mixtures[J]. Chemical Communications, 2003, 1:70-71. doi:10.1039/B210714G [2] MOHSENZADEH A, AL-WAHAIBI Y, AL-HAJRI R, et al. Effects of concentration, salinity and injection scenario of ionic liquids analogue in heavy oil recovery enhancement[J]. Journal of Petroleum Science and Engineering, 2015, 133:114-122. doi:10.1016/j.petrol.2015.04.036 [3] ZHAO Hua, BAKER G A. Ionic liquids and deep eutectic solvents for biodiesel synthesis:A review[J]. Journal of Chemical Technology & Biotechnology, 2013, 88(1):3-12. doi:10.1002/jctb.3935 [4] HANSEN B B, SPITTLE S, CHEN B, et al. Deep eutectic solvents:A review of fundamentals and applications[J]. Chemical Reviews, 2021, 121(3):1232-1285. doi:10.1021/acs.chemrev.0c00385 [5] JURIĆ T, UKA D, HOLLÓ B B, et al. Comprehensive physicochemical evaluation of choline chloride-based natural deep eutectic solvents[J]. Journal of Molecular Liquids, 2021, 343:116968. doi:10.1016/j.molliq.2021.116968 [6] ZHANG Yingying, JI Xiaoyan, LU Xiaohua. Cholinebased deep eutectic solvents for CO2 separation:Review and thermodynamic analysis[J]. Renewable and Sustainable Energy Reviews, 2018, 97:436-455. doi:10.1016/j.rser.2018.08.007 [7] ZHANG Qinghua, DE OLIVEIRA VIGIER K, ROYER S, et al. Deep eutectic solvents:Syntheses, properties and applications[J]. Chemical Society Reviews, 2012, 41(21):7108-7146. doi:10.1039/C2CS35178A [8] El-HOSHOUDY A N, SOLIMAN F S, MANSOUR E M, et al. Experimental and theoretical investigation of quaternary ammonium-based deep eutectic solvent for secondary water flooding[J]. Journal of Molecular Liquids, 2019, 294:111621. doi:10.1016/j.molliq.2019.111621 [9] MOHSENZADEH A, AL-WAHAIBI Y, AL-HAJRI R, et al. Sequential deep eutectic solvent and steam injection for enhanced heavy oil recovery and in-situ upgrading[J]. Fuel, 2017, 187:417-428. doi:10.1016/j.fuel.2016.09.077 [10] MANSHAD A K, REZAEI M, MORADI S, et al. Wettability alteration and interfacial tension (IFT) reduction in enhanced oil recovery (EOR) process by ionic liquid flooding[J]. Journal of Molecular Liquids, 2017, 248:153-162. doi:10.1016/j.molliq.2017.10.009 [11] ATILHAN M, APARICIO S. Review on chemical enhanced oil recovery:Utilization of ionic liquids and deep eutectic solvents[J]. Journal of Petroleum Science and Engineering, 2021, 205:108746. doi:10.1016/j.petrol.2021.108746 [12] SHAH D, MJALLI F S. Effect of water on the thermophysical properties of reline:An experimental and molecular simulation based approach[J]. Physical Chemistry Chemical Physics, 2014, 16(43):23900-23907. doi:10.1039/c4cp02600d [13] LAPEÑA D, BERGUA F, LOMBA L, et al. A comprehensive study of the thermophysical properties of reline and hydrated reline[J]. Journal of Molecular Liquids, 2020, 303:112679. doi:10.1016/j.molliq.2020.112679 [14] CHANDRAN K, KAIT C F, WILFRED C D, et al. A review on deep eutectic solvents:Physiochemical properties and its application as an absorbent for sulfur dioxide[J]. Journal of Molecular Liquids, 2021, 338:117021. doi:10.1016/j.molliq.2021.117021 [15] D'AGOSTINO C, HARRIS R C, ABBOTT A P, et al. Molecular motion and ion diffusion in choline chloride based deep eutectic solvents studied by 1H pulsed field gradient NMR spectroscopy[J]. Physical Chemistry Chemical Physics, 2011, 13(48):21383-21391. doi:10.1039/C1CP22554E [16] SMITH E L, ABBOTT A P, RYDER K S. Deep eutectic solvents (DESs) and their applications[J]. Chemical Reviews, 2014, 114(21):11060-11082. doi:10.1021/cr300162p [17] ABBOTT A P, HARRIS R C, RYDER K S, et al. Glycerol eutectics as sustainable solvent systems[J]. Green Chemistry, 2011, 13:82-90. doi:10.1039/C0GC00395F [18] MORAIS E S, MENDONCA P V, COELHO J F J, et al. Deep eutectic solvent aqueous solutions as efficient media for the solubilization of hardwood Xylans[J]. ChemistrySustainability-Energy-Materials, 2018, 11(4):753-762. doi:10.1002/cssc.201702007 [19] ABBOTT A P, BOOTHBY D, CAPPER G, et al. Deep eutectic solvents formed between choline chloride and carboxylic acids:Versatile alternatives to ionic liquids[J]. Journal of the American Chemical Society, 2004, 126(29):9142-9147. doi:10.1021/ja048266j [20] SHAFIE M H, YUSOF R, GAN C. Synthesis of citric acid monohydrate-choline chloride based deep eutectic solvents (DES) and characterization of their physicochemical properties[J]. Journal of Molecular Liquids, 2019, 288:111081. doi:10.1016/j.molliq.2019.111081 [21] SKULCOVA A, RUSS A, JABLONSKY M, et al. The pH behavior of seventeen deep eutectic solvents[J]. Journal of Land Use Science, 2018, 13(3):5042-5051. [22] ALOMAR M K, HAYYAN M, ALSAADI M A, et al. Glycerol-based deep eutectic solvents:Physical properties[J]. Journal of Molecular Liquids, 2016, 215:98-103. doi:10.1016/j.molliq.2015.11.032 [23] STEFANOVIC R, LUDWIG M, WEBBER G B, et al. Nanostructure, hydrogen bonding and rheology in choline chloride deep eutectic solvents as a function of the hydrogen bond donor[J]. Physical Chemistry Chemical Physics, 2017, 19:3297-3306. doi:10.1039/C6CP07932F [24] STEFANOVIC R, WEBBER G B, PAGE A J. Polymer solvation in choline chloride deep eutectic solvents modulated by the hydrogen bond donor[J]. Journal of Molecular Liquids, 2019, 279:584-593. doi:10.1016/j.molliq.2019.02.004 [25] CUI Yaowen, LI Meichun, WU Qinglin, et al. Synthesisfree phase-selective gelator for oil-spill remediation[J]. ACS Applied Materials & Interfaces, 2017, 9(39):33549-33553. doi:10.1021/acsami.7b10009 [26] HADJ-KALI M K, AL-KHIDIR K E, WAZEER I, et al. Application of deep eutectic solvents and their individual constituents as surfactants for enhanced oil recovery[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2015, 487:221-231. doi:10.1016/j.colsurfa.2015.10.005 [27] SANATI A, MALAYERI M R, BUSSE O, et al. Inhibition of asphaltene precipitation using hydrophobic deep eutectic solvents and ionic liquid[J]. Journal of Molecular Liquids, 2021, 334:116100. doi:10.1016/j.molliq.2021.116100 [28] HIRPARA D, PATEL B, CHAVDA V, et al. Micellization and clouding behaviour of an ionic surfactant in a deep eutectic solvent:A case of the reline-water mixture[J]. Journal of Molecular Liquids, 2022, 364:119991. doi:10.1016/j.molliq.2022.119991 [29] ARNOLD T, JACKSON A J, SANCHEZ-FERNANDEZ A, et al. Surfactant behavior of sodium dodecylsulfate in deep eutectic solvent choline chloride/urea[J]. Langmuir, 2015, 31(47):12894-12902. doi:10.1021/acs.langmuir.5b 02596 [30] HANAMERTANI A S, PILUS R M, MANAN N A, et al. The use of ionic liquids as additive to stabilize surfactant foam for mobility control application[J]. Journal of Petroleum Science and Engineering, 2018, 167:192-201. doi:10.1016/j.petrol.2018.04.010 [31] KESARWANI H, HAIDER M B, KUMAR R, et al. Performance evaluation of deep eutectic solvent for surfactant polymer flooding[J]. Journal of Molecular Liquids, 2022, 362:119734. doi:10.1016/j.molliq.2022.119734 [32] BANJARE R K, BANJARE M K, BEHERA K, et al. Micellization behavior of conventional cationic surfactants within glycerol-based deep eutectic solvent[J]. ACS Omega, 2020, 5(31):19350-19362. doi:10.1021/acsomega.0c00866 [33] BANJARE R K, BANJARE M K, BEHERA K, et al. Deep eutectic solvents as modulator on the micellization behaviour of cationic surfactants and potential application in human serum albumin aggregation[J]. Journal of Molecular Liquids, 2021, 344:117864. doi:10.1016/j.molliq.2021.117864 [34] PAL M, SINGH R K, PANDEY S. Evidence of selfaggregation of cationic surfactants in a choline chloride+glycerol deep eutectic solvent[J]. ChemPhysChem, 2015, 16(12):2538-2542. doi:10.1002/cphc.201500357 [35] SANCHEZ F A, HAMMOND O S, JACKSON A J, et al. Surfactant-solvent interaction effects on the micellization of cationic surfactants in a carboxylic acid-based deep eutectic solvent[J]. Langmuir, 2017, 33(50):14304-14314. doi:10.1021/acs.langmuir.7b03254 [36] SANATI A, MALAYERI M R. CTAB adsorption onto dolomite in the presence of ionic liquid and deep eutectic solvent:Experimental and theoretical studies[J]. Journal of Molecular Liquids, 2021, 325:115176. doi:10.1016/j.molliq.2020.115176 [37] SANATI A, RAHMANI S, NIKOO A H, et al. Comparative study of an acidic deep eutectic solvent and an ionic liquid as chemical agents for enhanced oil recovery[J]. Journal of Molecular Liquids, 2021, 329:115527. doi:10.1016/j.molliq.2021.115527 [38] MA J, PANG S, ZHOU W, et al. Novel deep eutectic solvents for stabilizing clay and inhibiting shale hydration[J]. Energy & Fuels, 2021, 35(9):7833-7843. doi:10.1021/acs.energyfuels.1c00319 [39] BEG M, HAIDER M B, THAKUR N K, et al. Claywater interaction inhibition using amine and glycol-based deep eutectic solvents for efficient drilling of shale formations[J]. Journal of Molecular Liquids, 2021, 340:117134. doi:10.1016/j.molliq.2021.117134 [40] 张莉. 中国石化东部老油田提高采收率技术进展及攻关方向[J]. 石油与天然气地质, 2022, 43(3):717-723. doi:10.11743/ogg20220320 ZHANG Li. Progress and research direction of EOR technology in eastern mature oilfields of SINOPEC[J]. Oil & Gas Geology, 2022, 43(3):717-723. doi:10.11743/ogg-20220320 [41] 陈丽华. 强水储层矿物高温变化对储层物性的影响——以金家油田沙一段为例[J]. 岩性油气藏, 2016, 28(4):121-126. doi:10.3969/j.issn.1673-8926.2016.04.017 CHEN Lihua. Influence of thermal alteration of minerals in strong water sensitive reservoir on physical properties:A case study from the first member of Shahejie Formation in Jinjia Oilfield[J]. Lithologic Oil and Gas Reservoirs, 2016, 28(4):121-126. doi:10.3969/j.issn.1673-8926.2016.04.017 [42] MANNHARDT K, SVORSTØL I. Surfactant concentration for foam formation and propagation in Snorre reservoir core[J]. Journal of Petroleum Science & Engineering, 2001, 30(2):105-119. doi:10.1016/S0920-4105(01)00107-3 [43] 胡文瑞,魏漪,鲍敬伟. 中国低渗透油气藏开发理论与技术进展[J]. 石油勘探与开发, 2018, 45(4):646-656. doi:10.11698/PED.2018.04.10 HU Wenrui, WEI Yi, BAO Jingwei. Development of the theory and technology for low permeability reservoirs in China[J]. Petroleum Exploration and Development, 2018, 45(4):646-656. doi:10.11698/PED.2018.04.10 [44] 康毅力,田键,罗平亚,等. 致密油藏提高采收率技术瓶颈与发展策略[J]. 石油学报, 2020, 41(4):467-477. doi:10.7623/syxb202004009 KANG Yili, TIAN Jian, LUO Pingya, et al. Technical bottlenecks and development strategies of enhancing recovery for tight oil reservoirs[J]. Acta Petrolei Sinica, 2020, 41(4):467-477. doi:10.7623/syxb202004009 [45] 刘雪芬. 超低渗透砂岩油藏注水特性及提高采收率研究[D]. 成都:西南石油大学, 2015. LIU Xuefen. Study on water injection characteristics and enhanced oil recovery in ultra-low permeability sandstone reservoirs[D]. Chengdu:Southwest Petroleum University, 2015. [46] BAUER F, PERSSON T, HULTEBERG C, et al. Biogas upgrading-technology overview, comparison and perspectives for the future[J]. Biofuels, Bioproducts and Biorefining, 2013, 7(5):499-511. doi:10.1002/bbb.1423 [47] SU Wencheng, WONG D S H, LI Menghui. Effect of water on solubility of carbon dioxide in (Aminomethanamide+2-Hydroxy-N, N, N-trimethylethanaminium Chloride)[J]. Journal of Chemical & Engineering Data, 2009, 54(6):1951-1955. doi:10.1021/je900078k [48] LI Xiaoyong, HOU Mingqiang, HAN Buxing, et al. Solubility of CO2 in a choline chloride + urea eutectic mixture[J]. Journal of Chemical & Engineering Data, 2008, 53(2):548-550. doi:10.1021/je700638u [49] LERON R B, LI Menghui. Solubility of carbon dioxide in a choline chloride-ethylene glycol based deep eutectic solvent[J]. Thermochimica Acta, 2013, 551:14-19. doi:10.1016/j.tca.2012.09.041 [50] YOO Y, LEE D, PARK J. Characteristics and configurations of task-specific deep eutectic solvents with CO2-philic functional groups[J]. Journal of Environmental Chemical Engineering, 2022, 10(3):108034. doi:10.1016/j.jece.2022.108034 [51] 袁士义,马德胜,李军诗,等. 二氧化碳捕集、驱油与埋存产业化进展及前景展望[J]. 石油勘探与开发, 2022, 49(4):828-834. doi:10.11698/PED.20220212 YUAN Shiyi, MA Desheng, LI Junshi, et al. Progress and prospects of carbon dioxide capture, EOR-utilization and storage industrialization[J]. Petroleum Exploration and Development, 2022, 49(4):828-834. doi:10.11698/PED.20220212 [52] 向勇,侯力,杜猛,等. 中国CCUS-EOR技术研究进展及发展前景[J]. 油气地质与采收率, 2023, 30(2):1-17. doi:10.13673/j.cnki.cn37-1359/te.202112048 XIANG Yong, HOU Li, DU Meng, et al. Research progress and development prospect of CCUS-EOR technologies in China[J]. Petroleum Geology and Oil Recovery, 2023, 30(2):1-17. doi:10.13673/j.cnki.cn37-1359/te.202112048 [53] 陈兴明. 分散式CO2-EOR项目数字化管理转型探索与实践[J]. 油气藏评价与开发, 2021, 11(4):635-642, 658. doi:10.13809/j.cnki.cn32-1825/te.2021.04.021 CHEN Xingming. Digital management transformation of distributed CO2-EOR project:Exploration and practice[J]. Reservoir Evaluation and Development, 2021, 11(4):635-642, 658. doi:10.13809/j.cnki.cn32-1825/te.2021.04.021 [54] 陈兴明. 低油价条件下CCUS的经济适用性评价[J]. 广州化工, 2021, 49(14):149-151, 243. doi:10.3969/j.issn.1001-9677.2021.14.054 CHEN Xingming. Evaluation of economic applicability of CCUS under low oil price[J]. Guangzhou Chemical Industry, 2021, 49(14):149-151, 243. doi:10.3969/j.issn.1001-9677.2021.14.054 |