[1] 何登发,贾承造,赵文智,等. 中国超深层油气勘探领域研究进展与关键问题[J]. 石油勘探与开发, 2023, 50(6): 1162-1172. doi: 10.11698/PED.20230269 HE Dengfa, JIA Chengzao, ZHAO Wenzhi, et al. Research progress and key issues of ultra-deep oil and gas exploration in China[J]. Petroleum Exploration and Development, 2023, 50(6): 1162–1172. doi: 10.11698/PED.20230269 [2] 贾承造. 含油气盆地深层-超深层油气勘探开发的科学技术问题[J]. 中国石油大学学报(自然科学版), 2023, 47(5): 1-12. doi: 10.3969/j.issn.1673-5005.2023.05.001 JIA Chengzao. Key scientific and technological problems of petroleum exploration and development in deep and ultra-deep formation[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(5): 1–12. doi: 10.3969/j.issn.1673-5005.2023.05.001 [3] 贾承造,王祖纲,姜林,等. 中国油气勘探开发成就与未来潜力:深层、深水与非常规油气——专访中国科学院院士、石油地质与构造地质学家贾承造[J]. 世界石油工业, 2023, 30(3): 1-8. doi: 10.20114/j.issn.10060030.20230626001 JIA Chengzao, WANG Zugang, JIANG Lin, et al. Achievements and future potential for oil & gas exploration and development in China: Deep-formation, deep-water and unconventional reservoirs Interview with JIA Chengzao, academician of the CAS, geologist in petroleum geology and structure[J]. World Petroleum Industry, 2023, 30(3): 1–8. doi: 10.20114/j.issn.1006-0030.20230626001 [4] 范家伟,袁野,李绍华,等. 塔里木盆地深层致密油藏地质工程一体化模拟技术[J]. 断块油气田, 2022, 29(2): 194-198. doi: 10.6056/dkyqt202202009 FAN Jiawei, YUAN Ye, LI Shaohua, et al. Geologyengineering integrated simulation technology of deep tight oil reservoir in Tarim Basin[J]. Fault-Block Oil and Gas Field, 2022, 29(2): 194198. doi: 10.6056/dkyqt202202009 [5] 张运东,方辉,刘帅奇,等. 深地油气勘探开发技术发展现状与趋势[J]. 世界石油工业, 2023, 30(6): 12-20. doi: 10.20114/j.issn.1006-0030.20230922001 ZHANG Yundong, FANG Hui, LIU Shuaiqi, et al. Process and development direction of deep oil and gas exploration and development[J]. World Petroleum Industry, 2023, 30(6): 12–20. 10.20114/j.issn.1006-0030.20230922001 [6] 薛婷,吉雨,成良丙,等. 一种确定水驱气藏动态储量及水体能量的新方法[J]. 大庆石油地质与开发, 2022, 41(1): 63-68. doi: 10.19597/j.issn.10003754.202101034 XUE Ting, JI Yu, CHENG Liangbing, et al. A new method for determining dynamic reserves and water energy in water drive gas reservoir[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(1): 63–68. doi: 10.19597/j.issn.1000-3754.202101034 [7] 闫正和,石军太,秦峰,等. 水驱气藏动态储量和水侵量计算新方法[J]. 中国海上油气, 2021, 33(1): 93-103. doi: 10.11935/j.issn.1673-1506.2021.01.011 YAN Zhenghe, SHI Juntai, QIN Feng, et al. A new method for calculating dynamic reserves and water influx of water drive gas reservoirs[J]. China Offshore Oil and Gas, 2021, 33(1): 93–103. doi: 10.11935/j.issn.1673-1506.2021.01.011 [8] 唐林,赵长虹,王丽,等. 确定水驱油藏水侵量和经济可采储量的新方法[J]. 油气地质与采收率, 2014, 21(5): 8486, 1-16. doi: 10.13673/j.cnki.cn37-1359/te.2014.05.020 TANG Lin, ZHAO Changhong, WANG Li, et al. A new method for determining water influx and economic recoverable reserves in water drive oil reservoir[J]. Petroleum Geology and Recovery Efficiency, 2014, 21(5): 8486, 116. doi: 10.13673/j.cnki.cn37-1359/te.2014.05.020 [9] 杜凌云,王怒涛,陈晖,等. 计算水驱气藏水侵量及动态地质储量的集成方法[J]. 天然气地球科学, 2018, 29(12): 1803-1808. doi: 10.11764/j.issn.1672-1926.2018.10.018 DU Lingyun, WANG Nutao, CHEN Hui, et al. Integrated method for calculating water influx and dynamic geological reserves in water-drive gas reservoirs[J]. Natural Gas Geoscience, 2018, 29(12): 1803–1808. doi: 10.11764/j.issn.1672-1926.2018.10.018 [10] HAN Xiaobing, TAN Xiaohua, LI Xiaoping, et al. A water invasion unit numerical simulation model for the distribution of water and water invasion channel in complex edge water reservoir[J]. Journal of Petroleum Science and Engineering, 2022, 215: 110508. doi: 10.1016/j.petrol.2022.110508 [11] 徐轩,万玉金,陈颖莉,等. 裂缝性边水气藏水侵机理及治水对策实验[J]. 天然气地球科学, 2019, 30(10): 1508-1518. doi: 10.11764/j.issn.1672-1926.2019.07.003 XU Xuan, WAN Yujin, CHEN Yingli, et al. Physical simulation of water invasion and water control for the fractured water-bearing gas reservoirs[J]. Natural Gas Geoscience, 2019, 30(10): 1508–1518. doi: 10.11764/j.issn.1672-1926.2019.07.003 [12] ZHANG Jiqun, DENG Baorong, HU Changjun, et al. Computation method for water influx in different layers of natural edge water[J]. Petroleum Exploration and Development, 2016, 43(5): 825–831. doi: 10.1016/S18763804(16)30098-2 [13] MA Yanqing, LIU Baolei, LIU Xiaoli, et al. Water invasion prediction method for edge–bottom water reservoirs: A case study in an oilfield in Xinjiang, China[J]. Processes, 2023, 11(3): 919. doi: 10.3390/pr11030919 [14] 李元生,藤赛男. 底水气藏非稳态流动水侵量和动储量预测模型研究[J]. 特种油气藏, 2023, 30(2): 116-121. doi: 10.3969/j.issn.1006-6535.2023.02.016 LI Yuansheng, TENG Sainan. Study on prediction model for unsteady water influx rate and dynamic reserves of gas reservoirs with bottom water[J]. Special Oil & Gas Reservoirs, 2023, 30(2): 116–121. doi: 10.3969/j.issn.1006-6535.2023.02.016 [15] ZHI Jiqiang, BO Lifeng, QU Guohui, et al. Water invasion law and water invasion risk identification method for deep sea bottom-water gas reservoir[J]. Energies, 2022, 15(5): 1937. doi: 10.3390/en15051937 [16] 于清艳,牟珍宝,刘鹏程,等. 含边底水气藏的水侵量计算方法[J]. 新疆石油地质, 2017, 38(5): 586-591. doi: 10.7657/XJPG20170513 YU Qingyan, MU Zhenbao, LIU Pengcheng, et al. Calculation methods of water influx in gas reservoirs with aquifers[J]. Xinjiang Petroleum Geology, 2017, 38(5): 586– 591. doi: 10.7657/XJPG20170513 [17] FANG Feifei, SHEN Weijun, LI Xizhe, et al. Experimental study on water invasion mechanism of fractured carbonate gas reservoirs in Longwangmiao Formation, Moxi Block, Sichuan Basin[J]. Environmental Earth Sciences, 2019, 78: 316. doi: 10.1007/s12665-019-8325-x [18] HU Yong, LI Xizhe, SHEN Weijun, et al. Study on the water invasion and its effect on the production from multilayer unconsolidated sandstone gas reservoirs[J/OL]. Geofluids, 2021[20–02–01]. https://doi.org/10.1155/2021/5135159. doi: 10.1155/2021/5135159 [19] 刘思远,李治平,陈鹏羽,等. 异常高压气藏水侵量计算新方法[J]. 特种油气藏, 2017, 24(6): 139-142. doi: 10.3969/j.issn.1006-6535.2017.06.027 LIU Siyuan, LI Zhiping, CHEN Pengyu, et al. A new method for calculating the aquifer influx of abnormal high-pressure gas reservoir[J]. Special Oil & Gas Reservoirs, 2017, 24(6): 139–142. doi: 10.3969/j.issn.1006-6535.2017.06.027 [20] 岳世俊,刘应如,项燚伟,等. 一种水侵气藏动态储量和水侵量计算新方法[J]. 岩性油气藏, 2023, 35(5): 153-160. doi: 10.12108/yxyqc.20230515 YUE Shijun, LIU Yingru, XIANG Yiwei, et al. A new method for calculating dynamic reserves and water influx of water-invaded gas reservoirs[J]. Lithologic Reservoirs, 2023, 35(5): 153–160. doi: 10.12108/yxyqc.20230515 [21] 吴克柳,李相方,范杰,等. 异常高压凝析气藏水侵量及水体大小计算方法[J]. 中国矿业大学学报, 2013, 42(1): 105-111. doi: 10.13247/j.cnki.jcumt.2013.01.019 WU Keliu, LI Xiangfang, FAN Jie, et al. An approach to calculate water influx and aquifer region of abnormally high pressure condensate gas reservoir[J]. Journal of China University of Mining & Technology, 2013, 42(1): 105–111. doi: 10.13247/j.cnki.jcumt.2013.01.019 [22] YANG Jing, LI Chengyong, GENG Shaoyang, et al. Microscopic flow mechanism of water invasion in ideal fracture models[J]. Energy Sources Part A-Recovery Utilization and Environmental Effects, 2020: 1–13. doi: 10.1080/15567036.2020.1795306 [23] 李玥洋,王娟,卢晓敏,等. 裂缝有水气藏无因次水侵量计算模型参数优化[J]. 天然气勘探与开发, 2019, 42(4): 84-89. doi: 10.12055/gaskk.issn.16733177.2019.04.010 LI Yueyang, WANG Juan, LU Xiaomin, et al. Optimizing parameters in dimensionless water-invasion calculation model of fractured water-drive gas reservoirs[J]. Natural Gas Exploration and Development, 2019, 42(4): 84–89. doi: 10.12055/gaskk.issn.1673-3177.2019.04.010 [24] ZHOU Mengfei, LI Xizhe, HU Yong, et al. Physical simulation experimental technology and mechanism of water invasion in fractured-porous gas reservoir: A review[J]. Energies, 2021, 14(13): 3918. doi: 10.3390/en14133918 [25] HUANG Shilin, LIU Jianyi, SUN Jidong, et al. Water invasion mode of carbonate gas reservoirs controlled by edge water: Three invasion modes[J]. Frontiers in Energy Research, 2022, 10: 860527. doi: 10.3389/fenrg.2022.860527 [26] 李勇,于清艳,李保柱,等. 缝洞型有水油藏动态储量及水体大小定量评价方法[J]. 中国科学:技术科学, 2017, 47(7): 708-717. doi: 10.1360/N092016-00286 LI Yong, YU Qingyan, LI Baozhu, et al. Quantitative evaluation method of OOIP and aquifer size for fracturedcaved carbonate reservoirs with active aquifer support[J]. Scientia Sinica: Technologica, 2017, 47(7): 708–717. doi: 10.1360/N092016-00286 [27] FANG Feifei, SHEN Weijun, GAO Shusheng, et al. Experimental study on the physical simulation of water invasion in carbonate gas reservoirs[J]. Applied SciencesBasel, 2017, 7(7): 697. doi: 10.3390/app7070697 [28] 邓惠,杨胜来,刘义成,等. 缝洞型碳酸盐岩底水气藏水侵规律预测新方法[J]. 天然气勘探与开发, 2023, 46(2): 37-43. doi: 10.12055/gaskk.issn.16733177.2023.02.005 DENG Hui, YANG Shenglai, LIU Yicheng, et al. A new method for predicting water-invasion laws in fracturedvuggy carbonate gas reservoirs with bottom water[J]. Natural Gas Exploration and Development, 2023, 46(2): 37– 43. doi: 10.12055/gaskk.issn.1673-3177.2023.02.005 [29] 王春生,王哲,张权,等. 塔里木油田超深层钻井技术进展及难题探讨[J]. 钻采工艺, 2024, 47(2): 59-69. doi: 10.3969/J.ISSN.1006-768X.2024.02.08 WANG Chunsheng, WANG Zhe, ZHANG Quan, et al. Progress and obstacles of ultra-deep drilling technology in Tarim Oilfield[J]. Drilling and Production Technology, 2024, 47(2): 59–69. doi: 10.3969/J.ISSN.1006-768X.2024.02.08 [30] 陈思芮,鲜本忠,纪友亮,等. 埋藏过程对深层超深层碎屑岩成岩作用及优质储层发育的影响——以准噶尔盆地南缘下白垩统清水河组为例[J]. 石油勘探与开发, 2024, 51(2): 323-336. doi: 10.11698/PED.20230529 CHEN Sirui, XIAN Benzhong, JI Youliang, et al. Influences of burial process on diagenesis and high-quality reservoir development of deep-ultra-deep clastic rocks: A case study of Lower Cretaceous Qingshuihe Formation in southern margin of Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2024, 51(2): 323–336. doi: 10.11698/PED.20230529 [31] 高德利,黄文君. 深层、超深层定向钻井中若干基础研究进展与展望[J]. 天然气工业, 2024, 44(1): 1-12. doi: 10.3787/j.issn.1000-0976.2024.01.001 GAO Deli, HUANG Wenjun. Basic research progress and prospect in deep and ultra-deep directional drilling[J]. Natural Gas Industry, 2024, 44(1): 1–12. doi: 10.3787/j.issn.1000-0976.2024.01.001 [32] 蔡珺君,彭先,余平,等. 超深层碳酸盐岩气藏流动物质平衡新方法[J]. 断块油气田, 2023, 30(4): 656-664. doi: 10.6056/dkyqt202304018 CAI Junjun, PENG Xian, YU Ping, et al. New method of flowing material balance in ultra deep carbonate gas reservoirs[J]. Fault-Block Oil & Gas Field, 2023, 30(4): 656–664. doi: 10.6056/dkyqt202304018 [33] STEHFEST H. Numerical inversion of Laplace transforms[J]. Communications of the ACM, 1970, 13(1): 47– 49. doi:10.1145/355598.362787 |