[1] 贾承造,王祖纲,姜林,等. 中国油气勘探开发成就与未来潜力:深层、深水与非常规油气——专访中国科学院院士、石油地质与构造地质学家贾承造[J]. 世界石油工业, 2023, 30(3): 1-8. doi: 10.20114/j.issn.10060030.20230626001 JIA Chengzao, WANG Zugang, JIANG Lin, et al. Achievements and future potential for oil & gas exploration and development in China: Deep-formation, deepwater and unconventional reservoirs—Interview with JIA Chengzao, Academician of the CAS, geologist in petroleum geology and structure[J]. World Petroleum Industry, 2023, 30(3): 1–8. doi: 10.20114/j.issn.1006-0030.20230626001 [2] 张运东,方辉,刘帅奇,等. 深地油气勘探开发技术发展现状与趋势[J]. 世界石油工业, 2023, 30(6): 12-20. doi: 10.20114/j.issn.1006-0030.20230922001 ZHANG Yundong, FANG Hui, LIU Shuaiqi, et al. Process and development direction of deep oil and gas exploration and development[J]. World Petroleum Industry, 2023, 30(6): 12–20. 10.20114/j.issn.1006-0030.20230922001 [3] 贾承造. 含油气盆地深层超深层-油气勘探开发的科学技术问题[J]. 中国石油大学学报(自然科学版), 2023, 47(5): 1-12. doi: 10.3969/j.issn.1673-5005.2023.05.001 JIA Chengzao. Key scientific and technological problems of petroleum exploration and development in deep and ultra-deep formation[J]. Journal of China University of Petroleum(Edition of Natural Science), 2023, 47(5): 1– 12. doi: 10.3969/j.issn.1673-5005.2023.05.001 [4] 田军,杨海军,朱永峰,等. 塔里木盆地富满油田成藏地质条件及勘探开发关键技术[J]. 石油学报, 2021, 42(8): 971-998. doi: 10.7623/syxb202108001 TIAN Jun, YANG Haijun, ZHU Yongfeng, et al. Geological conditions for hydrocarbon accumulation and key technologies for exploration and development in Fuman Oilfield, Tarim Basin[J]. Acta Petrolei Sinica, 2021, 42(8): 971–998. doi: 10.7623/syxb202108001 [5] 王玉伟,陈红汉,曹自成,等. 顺北地区流体活动对储层形成的控制作用[J]. 断块油气田, 2023, 30(1): 44-51. doi: 10.6056/dkyqt202301007 WANG Yuwei, CHEN Honghan, CAO Zicheng, et al. Controlling effects of fluid activity on reservoir formation in Shunbei Area[J]. Fault-Block Oil and Gas Field, 2023, 30(1): 44–51. doi: 10.6056/dkyqt202301007 [6] 刘彪,潘丽娟,王沫. 顺北油气田二区断控体油气藏井身结构设计及配套技术[J]. 断块油气田, 2023, 30(4): 692-697. doi: 10.6056/dkyqt202304023 LIU Biao, PAN Lijuan, WANG Mo. Well structure design and supporting technology of fault-controlled reservoir of No.2 Block in Shunbei Oil-gas Field[J]. Fault-Block Oil and Gas Field, 2023, 30(4): 692–697. doi: 10.6056/dkyqt202304023 [7] 张亚云,李大奇,高书阳,等. 顺北油气田奥陶系破碎性地层井壁失稳影响因素分析[J]. 断块油气田, 2022, 29(2): 256-260. doi: 10.6056/dkyqt202202020 ZHANG Yayun, LI Daqi, GAO Shuyang, et al. Analysis on influencing factors of wellbore instability of Ordovician fractured formation in Shunbei Oil and Gas Field[J]. Fault-Block Oil and Gas Field, 2022, 29(2): 256–260. doi: 10.6056/dkyqt202202020 [8] 李冬梅,邹伟,谢进,等. 基于等效渗流角模型的顺北油田线性流地层渗透率确定方法[J]. 断块油气田, 2022, 29(2): 251-255. doi: 10.6056/dkyqt202202019 LI Dongmei, ZOU Wei, XIE Jin, et al. The permeability determining method for linear flow reservoirs in Shunbei Oil Field based on the equivalent seepage angle model[J]. Fault-Block Oil and Gas Field, 2022, 29(2): 251–255. doi: 10.6056/dkyqt202202019 [9] 吕志凯,张建业,张永宾,等. 超深层裂缝性致密砂岩气藏储层连通性及开发启示——以塔里木盆地库车坳陷克深2 气藏为例[J]. 断块油气田, 2023, 30(1): 31-37, 95. doi: 10.6056/dkyqt202301005 LÜ Zhikai, ZHANG Jianye, ZHANG Yongbin, et al. Reservoir connectivity of ultra-deep fractured tight sandstone gas reservoir and development enlightenment: Taking Keshen 2 gas reservoir in Kuqa Depression of Tarim Basin as an example[J]. Fault-Block Oil and Gas Field, 2023, 30(1): 31–37, 95. doi: 10.6056/dkyqt202301005 [10] 宁方兴. 济阳坳陷地层油气藏油柱高度主控因素及定量计算[J]. 油气地质与采收率, 2008, 15(3): 9-11. doi: 10.3969/j.issn.1009-9603.2008.03.003 NING Fangxing. Main controlling factors and quantitative calculation of oil column height of the stratigraphic hydrocarbon reservoirs in Jiyang Depression[J]. Petroleum Geology and Recovery Efficiency, 2008, 15(3): 9–11. doi: 10.3969/j.issn.1009-9603.2008.03.003 [11] 严科,赵红兵. 断背斜油藏油水界面的差异分布及成因探讨[J]. 西南石油大学学报(自然科学版), 2013, 35(1): 28-34. doi: 10.3863/j.issn.1674-5086.2013.01.004 YAN Ke, ZHAO Hongbing. Discussion on the differential distribution of WOC and its mechanism in the faulted anticline reservoir[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2013, 35(1): 28–34. doi: 10.3863/j.issn.1674-5086.2013.01.004 [12] 李宗宇. 塔河缝洞型碳酸盐岩油藏油水界面变化规律探讨[J]. 石油地质与工程, 2010, 24(2): 79-81, 84. doi: 10.3969/j.issn.1673-8217.2010.02.023 LI Zongyu. Discussion on oil-water contact variance of fracture-cavity carbonate rock reservoir of Tahe[J]. Xinjiang Petroleum Geology, 2010, 24(2): 79–81, 84. doi: 10.3969/j.issn.1673-8217.2010.02.023 [13] 贾品,王远征,尚根华,等. 基于物质平衡方程的断溶体油藏动态油水界面预测新模型[J]. 中国石油大学学报(自然科学版), 2022, 46(1): 120-128. doi: 10.3969/j.issn.1673-5005.2022.01.014 JIA Pin, WANG Yuanzheng, SHANG Genhua, et al. A new model and its application for predicting dynamic oilwater interface in fault-solution reservoirs based on material balance equation[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(1): 120–128. doi: 10.3969/j.issn.1673-5005.2022.01.014 [14] 陈青,方小娟,余勤,等. 缝洞型碳酸盐岩油藏原始油水界面的分布评价——以塔河油田4 区为例[J]. 特种油气藏, 2010, 17(6): 78-81. doi: 10.3969/j.issn.10066535.2010.06.022 CHEN Qing, FANG Xiaojuan, YU Qin, et al. Evaluation of original oil-water interface distribution in fracture-cavern carbonate reservoirs: A case study with Tahe Oilfield[J]. Special Oil & Gas Reservoirs, 2010, 17(6): 78–81. doi: 10.3969/j.issn.1006-6535.2010.06.022 [15] 闫晓芳,邹伟宏,陈戈,等. 碳酸盐岩缝洞型油藏油水界面计算方法——以塔里木油田轮古15区块为例[J]. 石油地质与工程, 2012, 26(5): 67-69. doi: 10.3969/j.issn.1673-8217.2012.05.019 YAN Xiaofang, ZOU Weihong, CHEN Ge, et al. Calculation method of oil-water interface of fracture-cavern carbonate reservoirs: A case study with the 15th area of Lungu in Tarim Oilfield[J]. Xinjiang Petroleum Geology, 2012, 26(5): 67–69. doi: 10.3969/j.issn.1673-8217.2012.05.019 [16] 连建文,马剑坤,王仕莉,等. 顺北断控碳酸盐岩油藏油柱高度的计算方法研究[J]. 重庆科技学院学报(自然科学版), 2020, 22(3): 36-40. doi: 10.3969/j.issn.16731980.2020.03.011 LIAN Jianwen, MA Jiankun, WANG Shili, et al. Study on the method of oil column height in the control of carbonate reservoirs in Shunbei Oilfield[J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 2020, 22(3): 36–40. doi: 10.3969/j.issn.16731980.2020.03.011 [17] 郭春生,徐明海,薛世峰,等. 水平井注蒸汽非稳态传热与流动分析[J]. 中国石油大学学报(自然科学版), 2016, 40(4): 116-120. doi: 10.3969/j.issn.16735005.2016.04.015 GUO Chunsheng, XU Minghai, XUE Shifeng, et al. Process analysis of unsteady heat transfer and fluid flow-during steam injection via horizontal wells[J]. Journal of China University of Petroleum (Edition of Natural Science), 2016, 40(4): 116–120. doi: 10.3969/j.issn.16735005.2016.04.015 [18] 鹿腾,班晓春,李兆敏,等. 烟道气辅助SAGD蒸汽腔扩展机理[J]. 石油学报, 2021, 42(8): 1072-1080. doi: 10.7623/syxb202108008 LU Teng, BAN Xiaochun, LI Zhaomin, et al. Mechanisms on expansion of SAGD steam chamber assisted by flue gas[J]. Acta Petrolei Sinica, 2021, 42(8): 1072–1080. doi: 10.7623/syxb202108008 [19] 崔传智,郑文乾,祝仰文,等. 稠油油藏蒸汽吞吐后转化学驱极限井距的确定方法[J]. 中国石油大学学报(自然科学版), 2022, 46(1): 97-103. doi: 10.3969/j.issn.1673-5005.2022.01.011 CUI Chuanzhi, ZHENG Wenqian, ZHU Yangwen, et al. Method for determining limit well spacing of chemical flooding after reservoir steam soak in heavy oil reservoir[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(1): 97–103. doi: 10.3969/j.issn.1673-5005.2022.01.011 [20] 张海勇,姚为英,熊书权,等. 疏松砂岩稠油油田引热降黏技术研究与应用[J]. 天然气与石油, 2022, 40(1): 77-83. doi: 10.3969/j.issn.1006-5539.2022.01.012 ZHANG Haiyong, YAO Weiying, XIONG Shuquan, et al. The application of and research on geothermal water flooding technology in loose sandstone heavy oil fields[J]. Natural Gas and Oil, 2022, 40(1): 77–83. 10.3969/j.issn.1006-5539.2022.01.012 [21] 高孝巧,杨浩,熊繁升,等. 油页岩原位加热井下温度场及热应力研究[J]. 断块油气田, 2014, 21(3): 373-377. doi: 10.6056/dkyqt201403025 GAO Xiaoqiao, YANG Hao, XIONG Fansheng, et al. Temperature field and thermal stress of downhole system for in-situ heating on oil shale[J]. Fault-Block Oil & Gas Field, 2014, 21(3): 373–377. doi: 10.6056/dkyqt201403025 [22] PAN N, CHEN C, YOU Y, et al. A new mathematical model of the heat transfer characteristics of oil shale particles during retorting[J]. Oil Shale, 2017, 34(2): 167. |