[1] 杨雨,文龙,谢继容,等. 四川盆地海相碳酸盐岩天然气勘探进展与方向[J]. 中国石油勘探, 2020, 25(3): 44-55. doi: 10.3969/j.issn.1672-7703.2020.03.005 YANG Yu, WEN Long, XIE Jirong, et al. Progress and direction of marine carbonate gas exploration in Sichuan Basin[J]. China Petroleum Exploration, 2020, 25(3): 44– 55. doi: 10.3969/j.issn.1672-7703.2020.03.005 [2] 邹才能,赵群,王红岩,等. 中国海相页岩气主要特征及勘探开发主体理论与技术[J]. 天然气工业, 2022, 42(8): 1-13. doi: 10.3787/j.issn.1000-0976.2022.08.001 ZOU Caineng, ZHAO Qun, WANG Hongyan, et al. The main characteristics of marine shale gas and the theory & technology of exploration and development in China[J]. Natural Gas Industry, 2022, 42(8): 1–13. doi: 10.3787/j.issn.1000-0976.2022.08.001 [3] 汪泽成,施亦做,文龙,等. 用超级盆地思维挖掘四川盆地油气资源潜力的探讨[J]. 石油勘探与开发, 2022, 49(5): 847-858. doi: 10.11698/PED.20220133 WANG Zecheng, SHI Yizuo, WEN Long, et al. Exploring the potential of oil and gas resources in Sichuan Basin with super basin thinking[J]. Petroleum Exploration and Development, 2022, 49(5): 847–858. doi: 10.11698/PED.20220133 [4] 邓虎,贾利春. 四川盆地深井超深井钻井关键技术与展望[J]. 天然气工业, 2022, 42(12): 82-94. doi: 10.3787/j.issn.1000-0976.2022.12.009 DENG Hu, JIA Lichun. Key technologies for drilling deep and ultra-deep wells in the Sichuan Basin: Current status, challenges and prospects[J]. Natural Gas Industry, 2022, 42(12): 82–94. doi: 10.3787/j.issn.1000-0976.2022.12.009 [5] 吕开河,王晨烨,雷少飞,等. 裂缝性地层钻井液漏失规律及堵漏对策[J]. 中国石油大学学报(自然科学版), 2022, 46(2): 85-93. doi: 10.3969/j.issn.16735005.2022.02.008 LÜ Kaihe, WANG Chenye, LEI Shaofei, et al. Dynamic behavior and mitigation methods for drilling fluid loss in fractured formations[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(2): 85–93. doi: 10.3969/j.issn.1673-5005.2022.02.008 [6] 熊健,朱梦渊,李文苗,等. 高温作用下不同岩性岩石物理特性的演化规律[J]. 天然气工业, 2023, 43(12): 14-24. doi: 10.3787/j.issn.1000-0976.2023.12.002 XIONG Jian, ZHU Mengyuan, LI Wenmiao, et al. Evolution law of physical properties of rocks with different lithologies under high temperature[J]. Natural Gas Industry, 2023, 43(12): 14–24. doi: 10.3787/j.issn.1000-0976.2023.12.002 [7] 郭建春,管晨呈,李骁,等. 四川盆地深层含硫碳酸盐岩储层立体酸压核心理念与关键技术[J]. 天然气工业, 2023, 43(9): 14-24. doi: 10.3787/j.issn.10000976.2023.09.002 GUO Jianchun, GUAN Chencheng, LI Xiao, et al. Core concept and key technology of three-dimensional acidfracturing technology for deep carbonate reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2023, 43(9): 14–24. doi: 10.3787/j.issn.1000-0976.2023.09.002 [8] 陈力力,刘飞,杨建,等. 四川盆地深层超深层碳酸盐岩水平井分段酸压关键技术[J]. 天然气工业, 2022, 42(12): 56-64. doi: 10.3787/j.issn.1000-0976.2022.12.006 CHEN Lili, LIU Fei, YANG Jian, et al. Horizontal well staged acid fracturing technology for deep and ultra-deep carbonate gas reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2022, 42(12): 56–64. doi: 10.3787/j.issn.1000-0976.2022.12.006 [9] 吴文川,于小荣,王涛,等. 酸压用微膨胀可降解凝胶暂堵剂的研制与应用[J]. 油田化学, 2023, 40(1): 44-50. doi: 10.19346/j.cnki.1000-4092.2023.01.008 WU Wenchuan, YU Xiaorong, WANG Tao, et al. Development and application of degradable gel temporary plugging agent with micro-expansion for acid fracturing[J]. Oilfield Chemistry, 2023, 40(1): 44–50. doi: 10.19346/j.cnki.1000-4092.2023.01.008 [10] 蒲洪江,何兴贵,黄霞. 四川盆地元坝地区陆相储层高破裂压力成因与技术对策[J]. 天然气工业, 2014, 34(7): 65-70. doi: 10.3787/j.issn.1000-0976.2014.07.011 PU Hongjiang, HE Xinggui, HUANG Xia. Technological strategies for and causes of high fracture pressure of continental reservoirs in the Yuanba Gas Field, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(7): 65–70. doi: 10.3787/j.issn.1000-0976.2014.07.011 [11] 曾凡辉,唐波涛,王涛,等. 考虑渗滤效应的压裂裸眼井破裂压力预测模型[J]. 天然气地球科学, 2019, 30(4): 549-556. doi: 10.11764/j.issn.1672-1926.2019.01.010 ZENG Fanhui, TANG Botao, WANG Tao, et al. Prediction model of fracture initiation pressure of open hole well considering penetration effect[J]. Natural Gas Geoscience, 2019, 30(4): 549–556. doi: 10.11764/j.issn.1672-1926.2019.01.010 [12] 陈伟华,王瀚成,唐波涛,等. 深层高温高压储层酸压改造技术研究与应用[J]. 石油化工应用, 2023, 42(1): 80-84. doi: 10.3969/j.issn.1673-5285.2023.01.017 CHEN Weihua, WANG Hancheng, TANG Botao, et al. Research and application of acid fracturing technology for high temperature and pressure reservoir[J]. Petrochemical Industry Application, 2023, 42(1): 80–84. doi: 10.3969/j.issn.1673-5285.2023.01.017 [13] 王尔钧,马磊,曹峰,等. 定向井压裂射孔方位优化及应用研究[J]. 西南石油大学学报(自然科学版), 2023, 45(1): 117-126. doi: 10.11885/j.issn.16745086.2021.01.28.02 WANG Erjun, MA Lei, CAO Feng, et al. Research on optimization and application of fracturing perforation orientation in directional wells based on minimum initiation pressure[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(1): 117–126. doi: 10.11885/j.issn.1674-5086.2021.01.28.02 [14] 范勇,赵彦琳,朱哲明,等. 基于井筒-射孔模型的地层破裂压力及起裂角的理论研究[J]. 中南大学学报(自然科学版), 2019, 50(3): 669-678. doi: 10.11817/j.issn.1672-7207.2019.03.021 FAN Yong, ZHAO Yanlin, ZHU Zheming, et al. Theoretical study of break down pressures and fracture initiation angles based on model containing wellbore and perforations[J]. Journal of Central South University (Science and Technology), 2019, 50(3): 669–678. doi: 10.11817/j.issn.1672-7207.2019.03.021 [15] 杨顺辉,余夫,豆宁辉,等. 奥陶系地层压力剖面预测新方法研究[J]. 科学技术与工程, 2014, 14(16): 32-35. doi: 10.3969/j.issn.1671-1815.2014.16.007 YANG Shunhui, YU Fu, DOU Ninghui, et al. New method of studying on formation pressure profile on Ordovician[J]. Science Technology and Engineering, 2014, 14(16): 32–35. doi: 10.3969/j.issn.1671-1815.2014.16.007 [16] 邓燕,尹建,郭建春. 水平井多段压裂应力场计算新模型[J]. 岩土力学, 2015, 36(3): 660-666. doi: 10.16285/j.rsm.2015.03.008 DENG Yan, YIN Jian, GUO Jianchun. A new calculation model for stress field due to horizontal well staged fracturing[J]. Rock and Soil Mechanics, 2015, 36(3): 660–666. doi: 10.16285/j.rsm.2015.03.008 [17] 苟波,郭建春,余婷. 酸损伤降低岩石破裂压力计算新方法[J]. 中南大学学报(自然科学版), 2015, 46(1): 274-281. doi: 10.11817/j.issn.1672-7207.2015.01.037 GOU Bo, GUO Jianchun, YU Ting. New method for calculating rock fracture pressure by acid damage[J]. Journal of Central South University (Science and Technology), 2015, 46(1): 274–281. doi: 10.11817/j.issn.1672-7207.2015.01.037 [18] 郭建春,曾凡辉,赵金洲. 酸损伤射孔井储集层破裂压力预测模型[J]. 石油勘探与开发, 2011, 38(2): 221-227. doi: 10.3321/j.issn:1000-0747.201.02.038 GUO Jianchun, ZENG Fanhui, ZHAO Jinzhou. A model for predicting reservoir fracturing pressure of perforated wells after acid damage[J]. Petroleum Exploration and Development, 2011, 38(2): 221–227. doi: 10.3321/j.issn:1000-0747.201.02.038 [19] ZHANG Hao, ZHONG Ying, ZHANG Jiang, et al. Experimental research on deterioration of mechanical properties of carbonate rocks under acidified conditions[J]. Journal of Petroleum Science and Engineering, 2020, 185: 106612. doi: 10.1016/j.petrol.2019.106612 [20] KAO Jiawei, JIN Yan, ZHANG Kunpeng, et al. Experimental investigation on the characteristics of acid-etched fractures in acid fracturing by an Improved true tri-axial equipment[J]. Journal of Petroleum Science and Engineering, 2020, 184: 106471. doi: 10.1016/j.petrol.2019.106471 [21] 邓燕,薛仁江,郭建春. 低渗透储层酸预处理降低破裂压力机理[J]. 西南石油大学学报(自然科学版), 2011, 33(3): 125-129. doi: 10.3863/j.issn.16745086.2011.03.021 DENG Yan, XUE Renjiang, GUO Jianchun. The mechanism of high-pressure high-temperature and low permeability acid pretreatment to reduce fracturing pressure[J]. Journal of Southwest Petroleum University (Seience & Technology Edition), 2011, 33(3): 125–129. doi: 10.3863/j.issn.1674-5086.2011.03.021 [22] 曾凡辉,刘林,郭建春,等. 酸处理降低储层破裂压力机理及现场应用[J]. 油气地质与采收率, 2010, 17(1): 108-110. doi: 10.3969/j.issn.1009-9603.2010.01.033 ZENG Fanhui, LIU Lin, GUO Jianchun, et al. The mechanism and field application of reducing formation fracture pressure by acid treatment[J]. Petroleum Geology and Recovery Efficiency, 2010, 17(1): 108–110. doi: 10.3969/j.issn.1009-9603.2010.01.033 [23] 国家能源局. 岩样声波特性的实验室测量规范: SY/T 63512012[S]. 北京:中国标准出版社, 2012. National Energy Administration. Specification for measurement of rock acoustic properties in laboratory: SY/T 63512012[S]. Beijing: Standards Press of China, 2012. [24] 李勇明,廖毅,赵金洲,等. 基于双尺度等效渗流模型的复杂碳酸盐岩蚓孔扩展形态研究[J]. 天然气地球科学, 2016, 27(1): 121-127. doi: 10.11764/j.issn.16721926.2016.01.0121 LI Yongming, LIAO Yi, ZHAO Jinzhou, et al. Wormhole dissolution pattern study in complicated carbonate rock based on two-scale continuum model and equivalent seepage theory[J]. Natural Gas Geoscience, 2016, 27(1): 121–127. doi: 10.11764/j.issn.1672-1926.2016.01.0121 [25] 苟波,陈伟华,马辉运,等. 非均质碳酸盐岩裸眼水平井/大斜度井酸压精细分段技术[J]. 钻采工艺, 2020, 43(4): 61-63. doi: 10.3969/J.ISSN.1006-768X.2020.04.17 GOU Bo, CHEN Weihua, MA Huiyun, et al. Fine segmentation optimization technique for open-hole horizontal & high-angle well in heterogeneous carbonate reservoir[J]. Drilling & Production Technology, 2020, 43(4): 61–63. doi: 10.3969/J.ISSN.1006-768X.2020.04.17 [26] 印兴耀,马妮,马正乾,等. 地应力预测技术的研究现状与进展[J]. 石油物探, 2018, 57(4): 488-504. doi: 10.3969/j.issn.1000-1441.2018.04.001 YIN Xingyao, MA Ni, MA Zhengqian, et al. Review of insitu stress prediction technology[J]. Geophysical Prospecting for Petroleum, 2018, 57(4): 488–504. doi: 10.3969/j.issn.1000-1441.2018.04.001 [27] 雷明锋,赵晨阳,曾灿,等. 基于损伤释放能的岩石损伤计算方法[J]. 岩石力学与工程学报, 2022, 41(S2): 3210-3218. doi: 10.13722/j.cnki.jrme.2022.0065 LEI Mingfeng, ZHAO Chenyang, ZENG Can, et al. Rock damage calculation method based on the damage release energy[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(S2): 3210–3218. doi: 10.13722/j.cnki.jrme.2022.0065 [28] HOSSAIN M M, RAHMAN M K, RAHMAN S S. Hydraulic fracture initiation and propagation: Roles of wellbore trajectory, perforation and stress regimes[J]. Journal of Petroleum Science & Engineering, 2000, 27(3): 129– 149. doi: 10.1016/S0920-4105(00)00056-5 |