[1] 王玉婷,邓君宇,刘延民,等. 轻质油藏注空气过程中原油低温氧化反应的O2–CO2转换率[J]. 科学技术与工程, 2014, 14(26): 50-54, 71. doi: 10.3969/j.issn.16711815.2014.26.010 WANG Yuting, DENG Junyu, LIU Yanmin, et al. Oxygencarbon dioxide conversion ratio in air-light oil low temperature oxidation process[J]. Science Technology and Engineering, 2014, 14(26): 50–54, 71. doi: 10.3969/j.issn.1671-1815.2014.26.010 [2] 王云飞,魏建光. 减氧空气与轻质原油低温氧化反应特征[J]. 地质科技通报, 2023, 42(2): 207-213. doi: 10.19509/j.cnki.dzkq.2022.0181 WANG Yunfei, WEI Jianguang. Reaction characteristics of low temperature oxidation of light crude oil with disoxidation air[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 207–213. doi: 10.19509/j.cnki.dzkq.2022.0181 [3] 齐桓,李宜强,陈小龙,等. 轻质原油减氧空气驱低温氧化特征[J]. 石油勘探与开发, 2021, 48(6): 1210-1217. doi: 10.11698/PED.2021.06.12 QI Heng, LI Yiqiang, CHEN Xiaolong, et al. Low-temperature oxidation of light crude oil in oxygen-reduced air flooding[J]. Petroleum Exploration and Development, 2021, 48(6): 1210–1217. doi: 10.11698/PED.2021.06.12 [4] 赵帅,蒲万芬,冯天,等. 超稠油低温氧化和裂解成焦实验[J]. 特种油气藏, 2022, 29(3): 69-75. doi: 10.3969/j.issn.1006-6535.2022.03.010 ZHAO Shuai, PU Wanfen, FENG Tian, et al. Experiments on low-temperature oxidation, pyrolysis and coking of super-heavy oil[J]. Special Oil & Gas Reservoirs, 2022, 29(3): 69–75. doi: 10.3969/j.issn.1006-6535.2022.03.010 [5] 滕卫卫,吴庆祥,胡晓蝶,等. 低渗透油藏空气驱原油氧化机理实验[J]. 特种油气藏, 2022, 29(3): 104-111. doi: 10.3969/j.issn.1006-6535.2022.03.015 TENG Weiwei, WU Qingxiang, HU Xiaodie, et al. Experiment on oxidation mechanism of crude oil by air flooding in lowpermeability reservoirs[J]. Special Oil & Gas Reservoirs, 2022, 29(3): 104–111. doi: 10.3969/j.issn.1006-6535.2022.03.015 [6] 户昶昊. 火驱高温与低温氧化转换界限研究[J]. 特种油气藏, 2021, 28(5): 86-92. doi: 10.3969/j.issn.10066535.2021.05.012 HU Changhao. Study on transform boundary of hightemperntwe and low-temperature oxidation in in-situ combustion[J]. Special Oil & Gas Reservoirs, 2021, 28(5): 86–92. doi: 10.3969/j.issn.1006-6535.2021.05.012 [7] SHOKOYA O, MEHTA S, MOORE R G, et al. Does miscibility of in situ generated flue gases with light crude oils contribute to oil recovery under high pressure air injection[C]. PETSOC–2001–019, 2001. doi: 10.2118/2001019 [8] MURUGAN P, MAHINPEY N, MANI T, et al. Effect of low-temperature oxidation on the pyrolysis and combustion of whole oil[J]. Energy, 2010, 35(5): 2317–2322. doi: 10.1016/j.energy.2010.02.022 [9] NIU Baolun, REN Shaoran, LIU Yinhua, et al. Low-temperature oxidation of oil components in an air injection process for improved oil recovery[J]. Energy & Fuels, 2011, 25(10): 4299–4304. doi: 10.1021/ef200891u [10] 唐君实,关文龙,梁金中,等. 热重分析仪求取稠油高温氧化动力学参数[J]. 石油学报, 2013, 34(4): 775-779. doi: 10.7623/syxb201304020 TANG Junshi, GUAN Wenlong, LIANG Jinzhong, et al. Determination on high-temperature oxidation kinetic parameters of heavy oils with thermogravimetric analyzer[J]. Acta Petrolei Sinica, 2013, 34(4): 775–779. doi: 10.7623/ syxb201304020 [11] 何勇,陈建标,户昶昊,等. N2和 CO2气氛下辽河稠油热解过程及产物性质[J]. 石油学报(石油加工), 2019, 35(1): 128-135. doi: 10.3969/j.issn.1001-8719.2019.01.016 HE Yong, CHEN Jianbiao, HU Changhao, et al. Pyrolysis process and product properties of liaohe heavy oil under N2 and CO2 atmosphere[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2019, 35(1): 128–135. doi: 10.3969/j.issn.1001-8719.2019.01.016 [12] 蒲万芬,王亮亮,彭小强,等. 稠油低温氧化特性及行为研究[J]. 油气藏评价与开发, 2019, 9(4): 41-46. doi: 10.3969/j.issn.2095-1426.2019.04.008 PU Wanfen, WANG Liangliang, PENG Xiaoqiang, et al. Study on characteristics and behaviors of low temperature oxidation of heavy crude oil[J]. Reservoir Evaluation and Development, 2019, 9(4): 41–46. doi: 10.3969/j.issn.2095-1426.2019.04.008 [13] 侯胜明,刘印华,于洪敏,等. 注空气过程轻质原油低温氧化动力学[J]. 中国石油大学学报(自然科学版), 2011, 35(1): 169-173. doi: 10.3969/j.issn.1673-5005.2011.01.034 HOU Shengming, LIU Yinhua, YU Hongmin, et al. Kinetics of low temperature oxidation of light oil in air injection process[J]. Journal of China University of Petroleum (Edition of Natural Science), 2011, 35(1): 169–173. doi: 10.3969/j.issn.1673-5005.2011.01.034 [14] 王杰祥,夏金娜,刘双龙,等. 轻质原油低温氧化动力学研究[J]. 特种油气藏, 2013, 20(1): 105-107. doi: 10.3969/j.issn.1006-6535.2013.01.028 WANG Jiexiang, XIA Jinna, LIU Shuanglong, et al. Study on kinetics of light oil under low temperature oxidation[J]. Special Oil & Gas Reservoirs, 2013, 20(1): 105–107. doi: 10.3969/j.issn.1006-6535.2013.01.028 [15] 张弦,王海涛,车洪昌. 稠油火烧油层高温氧化动力学参数计算与分析[J]. 非常规油气, 2021, 8(4): 36-42, 92. doi: 10.19901/j.fcgyq.2021.04.05 ZHANG Xian, WANG Haitao, CHE Hongchang. Calculation and analysis of kinetic parameters of heavy oil high temperature oxidation during in situ combustion[J]. Unconventional Oil & Gas, 2021, 8(4): 36–42, 92. doi: 10.19901/j.fcgyq.2021.04.05 [16] YUAN C, DMITRII A E, MIKHAIL A V. Oxidation behavior and kinetics of light, medium and heavy crude oils characterized by thermogravimetry coupled with Fouriertransform infrared spectroscopy (TG-FTIR)[J]. Energy & Fuels, 2018, 32(4): 5571–5580. doi: 10.1021/acs.energyfu els.8b00428 [17] LI J, MEHTA S A, MOORE R G, et al. Investigation of the oxidation behaviour of pure hydrocarbon components and crude oils utilizing PDSC thermal technique[J]. The Journal of Canadian Petroleum Technology, 2006, 45(1): 48–53. doi: 10.2118/06-01-04 [18] KOK M V. Thermo-oxidative reactions of crude oils[J]. Journal of Thermal Analysis and Calorimetry, 2010, 105(2): 411–414. doi: 10.1007/s10973-010-1117-x [19] KOK M V, KESKIN C. Comparative combustion kinetics for in situ combustion process[J]. Thermochimica Acta, 2001, 369(12): 143–147. doi: 10.1016/s00406031(00)00765-6 [20] FREITAG N P, VERKOCZY B. Low-temperature oxidation of oils in terms of SARA fractions: Why simple reaction models don't work[J]. The Journal of Canadian Petroleum Technology, 2005, 44(3): 54–61. doi: 10.2118/2003176 |