[1] 陈惠玲. 节流管汇存在的问题及改进措施[J]. 天然气工业, 1998, 18(4):91-92. CHEN Huiling. The existing problems and improvement measures of throttle manifold[J]. Natural Gas Industry, 1998, 18(4):91-92. [2] 刘清友,包凯,付玉坤,等. 高压节流阀节流特征及流固耦合失效分析[J]. 流体机械, 2014, 42(6):6-13. LIU Qingyou, BAO Kai, FU Yukun, et al. Throttling characteristics and failure analysis of high pressure throttle valves based on fluid-solid coupling[J]. Fluid Machinery, 2014, 42(6):6-13. [3] 潘杰,李媛 媛,曹清 寒,等. 基于 双级 节流 制冷 循环 的天 然气 液化 工艺 模拟 与优 化[J]. 天然 气工业, 2024, 44(6):111-121. doi:10.3787/j.issn.1000- 0976.2024.06.011 PAN Jie, LI Yuanyuan, CAO Qinghan, et al. Simulation and optimization of natural gas liquefaction process based on two-stage throttling refrigeration cycle[J]. Natural Gas Industry, 2024, 44(6):111-121. doi:10.3787/j.issn.1000- 0976.2024.06.011 [4] 吕振虎,张羽鹏,石善志,等. 水平井体积压裂高速冲蚀套管内井下行为特征研究[J]. 石油钻探技术, 2024, 52(6):86-96. doi:10.11911/syztjs.2024072 LU¨ Zhenhu, ZHANG Yupeng, SHI Shanzhi, et al. Downhole behavior characteristics of horizontal well volume fracturing in high-speed erosion casing[J]. Petroleum Drilling Techniques, 2024, 52(6):86-96. doi:10.11911/syztjs.2024072 [5] PENG Wenshan, CAO Xuewen, HOU Jian, et al. Experiment and numerical simulation of sand particle erosion under slug flow condition in a horizontal pipe bend[J]. Journal of Natural Gas Science and Engineering, 2020, 76:103175. doi:10.1016/j.jngse.2020.103175 [6] KISHOR B, CHAUDHARI G P, NATH S K. Slurry erosion behaviour of thermomechanically treated 16Cr5Ni stainless steel[J]. Tribology International, 2018, 119:411- 418. doi:10.1016/j.triboint.2017.11.025 [7] ZOU Libo, YU Cungui, FENG Guangbin, et al. Establishment of erosion model of gun steel material and study on its erosion performance[J]. Journal of Mechanical Science and Technology, 2020, 34(4):244-252. doi:10.1007/s12206-020-0423-x [8] ZHAO Yanlin, TANG Chunyan, Yao Jun, et al. Investigation of erosion behavior of 304 stainless steel under solid-liquid jet flow impinging at 30?[J]. Petroleum Science, 2020, 17(4):16-26. doi:10.1007/s12182-020- 00473-7 [9] 孔浩. 基于流体仿真模拟的激波雾化节流器研究与应用[J]. 非常规油气, 2025, 12(5):125-132. doi:10.19901/j.fcgyq.2025.05.14 KONG Hao. Research and application of shock wave atomization throttle based on CFD fluid simulation[J]. Unconventional Oil & Gas, 2025, 12(5):125-132. doi:10.19901/j.fcgyq.2025.05.14 [10] 王博,古小龙,李文霞,等. 强冲蚀不规则孔眼封堵 规律 实验 研究[J]. 西安 石油 大学 学报(自然 科学版), 2023, 38(6):46-53. doi:10.3969/j.issn.1673- 064X.2023.06.006 WANG Bo, GU Xiaolong, LI Wenxia, et al. Experimental study on plugging of severely eroded irregular perforated hole[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2023, 38(6):46-53. doi:10.3969/j.issn.1673-064X.2023.06.006 [11] 张爱波,樊建春,耿亚楠,等. 拉应力作用下冲蚀速度对35CrMo钢冲蚀磨损行为的影响[J]. 润滑与密封, 2017, 42(3):45-48, 81. doi:10.3969/j.issn.0254- 0150.2017.03.009 ZHANG Aibo, FAN Jianchun, GENG Ya'nan, et al. Effect of impacting velocity on erosion wear resistance of 35CrMo under stress[J]. Lubrication Engineering, 2017, 42(3):45-48, 81. doi:10.3969/j.issn.0254-0150.2017.03.009 [12] 杨向前,王虹富,樊建春. 35CrMo钢冲蚀磨损性能和机制的研究[J]. 石油机械, 2017, 45(7):72-77. doi:10.16082/j.cnki.issn.1001-4578.2017.07.015 YANG Xiangqian, WANG Hongfu, FAN Jianchun. Study on erosion wear property and mechanism of 35CrMo steel[J]. China Petroleum Machinery, 2017, 45(7):72-77. doi:10.16082/j.cnki.issn.1001-4578.2017.07.015 [13] 王国荣,熊柯睿,黄亮,等. 40Cr在高压液固两相流中的冲蚀行为[J]. 润滑与密封, 2018, 43(2):1-5, 11. doi:10.3969/j.issn.0254-0150.2018.02.001 WANG Guorong, XIONG Kerui, HUANG Liang, et al. Erosion behavior of 40Cr in high pressure liquid-solid two phase flow[J]. Lubrication Engineering, 2018, 43(2):1-5, 11. doi:10.3969/j.issn.0254-0150.2018.02.001 [14] VYAS A, MENGHANI J, PATEL P, et al. Characterization and optimization of slurry erosion behavior of SS 316 at room temperature[J]. Transactions of the Indian Institute of Metals, 2021, 74(4):1-11. doi:10.1007/s12666-020- 02169-3 [15] NGUYEN Q B. Slurry erosion characteristics and erosion mechanisms of stainless steel[J]. Tribology International, 2014, 79(1):1-7. doi:10.1016/j.triboint.2014.05.014 [16] 刘冰,邓宽 海,林元 华,等. 高速 固体 颗粒 冲击 下30CrMo钢的冲蚀机理测试研究[J]. 表面技术, 2023, 52(9):135-145. doi:10.16490/j.cnki.issn.1001- 3660.2023.09.010 LIU Bing, DENG Kuanhai, LIN Yuanhua, et al. Erosion mechanism of 30CrMo steel impacted by high speed solid particles[J]. Surface Technology, 2023, 52(9):135-145. doi:10.16490/j.cnki.issn.1001-3660.2023.09.010 [17] NGUYEN V B, NGUYEN Q B, LIU Z G, et al. A combined numerical-experimental study on the effect of surface evolution on the water-sand multiphase flow characteristics and the material erosion behavior[J]. Wear, 2014, 319(1-2):96-109. doi:10.1016/j.wear.2014.07.017 [18] LIN N, ARABNEJAD H, SHIRAZI S A, et al. Experimental study of particle size, shape and particle flow rate on erosion of stainless steel[J]. Powder Technology, 2018, 336:70-79. doi:10.1016/j.powtec.2018.05.039 [19] LAGUNA-CAMACHO J R, MARQUINA-CHáVEZ A, MéNDEZ-MéNDEZ J V, et al. Solid particle erosion of AISI 304, 316 and 420 stainless steels[J]. Wear, 2013, 301(1-2):398-405. doi:10.1016/j.wear.2012.12.047 [20] NGUYEN Q B, NGUYEN V B, LIM C, et al. Effect of impact angle and testing time on erosion of stainless steel at higher velocities[J]. Wear, 2014, 321:87-93. doi:10.1016/j.wear.2014.10.010 [21] 祝效华,刘少胡,童华. 气体钻井钻杆冲蚀规律研究[J]. 石油学报, 2010, 31(6):1013-1017. doi:10.7623/syxb- 201006025 ZHU Xiaohua, LIU Shaohu, DONG Hua. A study on the drill pipe erosion law in gas drilling[J]. Acta Petrolei Sinica, 2010, 31(6):1013-1017. doi:10.7623/syxb2010- 06025 [22] WANG G R, CHU F, TAO S Y, et al. Optimization design for throttle valve of managed pressure drilling based on CFD erosion simulation and response surface methodology[J]. Wear, 2015, 338-339:114-121. doi:10.1016/j.wear.2015.06.001 [23] LIU Haixiao, ZHOU Zhongwei, LIU Mingyang. A probability model of predicting the sand erosion profile in elbows for gas flow[J]. Wear, 2015, 342-343:377-390. doi:10.1016/j.wear.2015.09.012 [24] 邱亚玲,邹凤彬,祝效华,等. 页岩气压裂双弯头弯管冲蚀规律研究[J]. 润滑与密封, 2016, 41(9):97-101. doi:10.3969/j.issn.0254-0150.2016.09.018 QIU Yaling, ZOU Fengbin, ZHU Xiaohua, et al. Study on erosion wear of shale gas fracture on double elbows bend[J]. Lubrication Engineering, 2016, 41(9):97-101. doi:10.3969/j.issn.0254-0150.2016.09.018 [25] ZHAO Xuebin, TANG G H, LIU Zhigang, et al. Finite element analysis of anti-erosion characteristics of material with patterned surface impacted by particles[J]. Powder Technology, 2019, 342:193-203. doi:10.1016/j.powtec.2018.09.083 [26] ZHANG Ri, ZHAO Xiaofeng, ZHAO Guanhua, et al. Analysis of solid particle erosion in direct impact tests using the discrete element method[J]. Powder Technology, 2021, 383:256-269. doi:10.1016/j.powtec.2021.01.034 [27] PENG Wenshan, CAO Xuewen, HOU Jian, et al. Numerical prediction of solid particle erosion under upward multiphase annular flow in vertical pipe bends[J]. Interhole[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2023, 38(6):46-53. doi:10.3969/j.issn.1673-064X.2023.06.006 [11] 张爱波,樊建春,耿亚楠,等. 拉应力作用下冲蚀速度对35CrMo钢冲蚀磨损行为的影响[J]. 润滑与密封, 2017, 42(3):45-48, 81. doi:10.3969/j.issn.0254- 0150.2017.03.009 ZHANG Aibo, FAN Jianchun, GENG Ya'nan, et al. Effect of impacting velocity on erosion wear resistance of 35CrMo under stress[J]. Lubrication Engineering, 2017, 42(3):45-48, 81. doi:10.3969/j.issn.0254-0150.2017.03.009 [12] 杨向前,王虹富,樊建春. 35CrMo钢冲蚀磨损性能和机制的研究[J]. 石油机械, 2017, 45(7):72-77. doi:10.16082/j.cnki.issn.1001-4578.2017.07.015 YANG Xiangqian, WANG Hongfu, FAN Jianchun. Study on erosion wear property and mechanism of 35CrMo steel[J]. China Petroleum Machinery, 2017, 45(7):72-77. doi:10.16082/j.cnki.issn.1001-4578.2017.07.015 [13] 王国荣,熊柯睿,黄亮,等. 40Cr在高压液固两相流中的冲蚀行为[J]. 润滑与密封, 2018, 43(2):15, 11. doi:10.3969/j.issn.0254-0150.2018.02.001 WANG Guorong, XIONG Kerui, HUANG Liang, et al. Erosion behavior of 40Cr in high pressure liquid-solid two phase flow[J]. Lubrication Engineering, 2018, 43(2):1-5, 11. doi:10.3969/j.issn.0254-0150.2018.02.001 [14] VYAS A, MENGHANI J, PATEL P, et al. Characterization and optimization of slurry erosion behavior of SS 316 at room temperature[J]. Transactions of the Indian Institute of Metals, 2021, 74(4):1-11. doi:10.1007/s12666-020- 02169-3 [15] NGUYEN Q B. Slurry erosion characteristics and erosion mechanisms of stainless steel[J]. Tribology International, 2014, 79(1):1-7. doi:10.1016/j.triboint.2014.05.014 [16] 刘冰,邓宽 海,林元 华,等. 高速 固体 颗粒 冲击 下30CrMo钢的冲蚀机理测试研究[J]. 表面技术, 2023, 52(9):135-145. doi:10.16490/j.cnki.issn.1001- 3660.2023.09.010 LIU Bing, DENG Kuanhai, LIN Yuanhua, et al. Erosion mechanism of 30CrMo steel impacted by high speed solid particles[J]. Surface Technology, 2023, 52(9):135-145. doi:10.16490/j.cnki.issn.1001-3660.2023.09.010 [17] NGUYEN V B, NGUYEN Q B, LIU Z G, et al. A combined numerical-experimental study on the effect of surface evolution on the water-sand multiphase flow characteristics and the material erosion behavior[J]. Wear, 2014, 319(1-2):96-109. doi:10.1016/j.wear.2014.07.017 [18] LIN N, ARABNEJAD H, SHIRAZI S A, et al. Experimental study of particle size, shape and particle flow rate on erosion of stainless steel[J]. Powder Technology, 2018, 336:70-79. doi:10.1016/j.powtec.2018.05.039 [19] LAGUNA-CAMACHO J R, MARQUINA-CHáVEZ A, MéNDEZ-MéNDEZ J V, et al. Solid particle erosion of AISI 304, 316 and 420 stainless steels[J]. Wear, 2013, 301(1-2):398-405. doi:10.1016/j.wear.2012.12.047 [20] NGUYEN Q B, NGUYEN V B, LIM C, et al. Effect of impact angle and testing time on erosion of stainless steel at higher velocities[J]. Wear, 2014, 321:87-93. doi:10.1016/j.wear.2014.10.010 [21] 祝效华,刘少胡,童华. 气体钻井钻杆冲蚀规律研究[J]. 石油学报, 2010, 31(6):1013-1017. doi:10.7623/syxb- 201006025 ZHU Xiaohua, LIU Shaohu, DONG Hua. A study on the drill pipe erosion law in gas drilling[J]. Acta Petrolei Sinica, 2010, 31(6):1013-1017. doi:10.7623/syxb2010- 06025 [22] WANG G R, CHU F, TAO S Y, et al. Optimization design for throttle valve of managed pressure drilling based on CFD erosion simulation and response surface methodology[J]. Wear, 2015, 338-339:114-121. doi:10.1016/j.wear.2015.06.001 [23] LIU Haixiao, ZHOU Zhongwei, LIU Mingyang. A probability model of predicting the sand erosion profile in elbows for gas flow[J]. Wear, 2015, 342-343:377-390. doi:10.1016/j.wear.2015.09.012 [24] 邱亚玲,邹凤彬,祝效华,等. 页岩气压裂双弯头弯管冲蚀规律研究[J]. 润滑与密封, 2016, 41(9):97-101. doi:10.3969/j.issn.0254-0150.2016.09.018 QIU Yaling, ZOU Fengbin, ZHU Xiaohua, et al. Study on erosion wear of shale gas fracture on double elbows bend[J]. Lubrication Engineering, 2016, 41(9):97-101. doi:10.3969/j.issn.0254-0150.2016.09.018 [25] ZHAO Xuebin, TANG G H, LIU Zhigang, et al. Finite element analysis of anti-erosion characteristics of material with patterned surface impacted by particles[J]. Powder Technology, 2019, 342:193-203. doi:10.1016/j.powtec.2018.09.083 [26] ZHANG Ri, ZHAO Xiaofeng, ZHAO Guanhua, et al. Analysis of solid particle erosion in direct impact tests using the discrete element method[J]. Powder Technology, 2021, 383:256-269. doi:10.1016/j.powtec.2021.01.034 [27] PENG Wenshan, CAO Xuewen, HOU Jian, et al. Numerical prediction of solid particle erosion under upward multiphase annular flow in vertical pipe bends[J]. Interhole[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2023, 38(6):46-53. doi:10.3969/j.issn.1673-064X.2023.06.006 [11] 张爱波,樊建春,耿亚楠,等. 拉应力作用下冲蚀速度对35CrMo钢冲蚀磨损行为的影响[J]. 润滑与密封, 2017, 42(3):45-48, 81. doi:10.3969/j.issn.0254- 0150.2017.03.009 ZHANG Aibo, FAN Jianchun, GENG Ya'nan, et al. Effect of impacting velocity on erosion wear resistance of 35CrMo under stress[J]. Lubrication Engineering, 2017, 42(3):45-48, 81. doi:10.3969/j.issn.0254-0150.2017.03.009 [12] 杨向前,王虹富,樊建春. 35CrMo钢冲蚀磨损性能和机制的研究[J]. 石油机械, 2017, 45(7):72-77. doi:10.16082/j.cnki.issn.1001-4578.2017.07.015 YANG Xiangqian, WANG Hongfu, FAN Jianchun. Study on erosion wear property and mechanism of 35CrMo steel[J]. China Petroleum Machinery, 2017, 45(7):72-77. doi:10.16082/j.cnki.issn.1001-4578.2017.07.015 [13] 王国荣,熊柯睿,黄亮,等. 40Cr在高压液固两相流中的冲蚀行为[J]. 润滑与密封, 2018, 43(2):1-5, 11. doi:10.3969/j.issn.0254-0150.2018.02.001 WANG Guorong, XIONG Kerui, HUANG Liang, et al. Erosion behavior of 40Cr in high pressure liquid-solid two phase flow[J]. Lubrication Engineering, 2018, 43(2):1-5, 11. doi:10.3969/j.issn.0254-0150.2018.02.001 [14] VYAS A, MENGHANI J, PATEL P, et al. Characterization and optimization of slurry erosion behavior of SS 316 at room temperature[J]. Transactions of the Indian Institute of Metals, 2021, 74(4):1-11. doi:10.1007/s12666-020- 02169-3 [15] NGUYEN Q B. Slurry erosion characteristics and erosion mechanisms of stainless steel[J]. Tribology International, 2014, 79(1):1-7. doi:10.1016/j.triboint.2014.05.014 [16] 刘冰,邓宽 海,林元 华,等. 高速 固体 颗粒 冲击 下30CrMo钢的冲蚀机理测试研究[J]. 表面技术, 2023, 52(9):135-145. doi:10.16490/j.cnki.issn.1001- 3660.2023.09.010 LIU Bing, DENG Kuanhai, LIN Yuanhua, et al. Erosion mechanism of 30CrMo steel impacted by high speed solid particles[J]. Surface Technology, 2023, 52(9):135-145. doi:10.16490/j.cnki.issn.1001-3660.2023.09.010 [17] NGUYEN V B, NGUYEN Q B, LIU Z G, et al. A combined numerical-experimental study on the effect of surface evolution on the water-sand multiphase flow characteristics and the material erosion behavior[J]. Wear, 2014, 319(1-2):96-109. doi:10.1016/j.wear.2014.07.017 [18] LIN N, ARABNEJAD H, SHIRAZI S A, et al. Experimental study of particle size, shape and particle flow rate on erosion of stainless steel[J]. Powder Technology, 2018, 336:70-79. doi:10.1016/j.powtec.2018.05.039 [19] LAGUNA-CAMACHO J R, MARQUINA-CHáVEZ A, MéNDEZ-MéNDEZ J V, et al. Solid particle erosion of AISI 304, 316 and 420 stainless steels[J]. Wear, 2013, 301(1-2):398-405. doi:10.1016/j.wear.2012.12.047 [20] NGUYEN Q B, NGUYEN V B, LIM C, et al. Effect of impact angle and testing time on erosion of stainless steel at higher velocities[J]. Wear, 2014, 321:87-93. doi:10.1016/j.wear.2014.10.010 [21] 祝效华,刘少胡,童华. 气体钻井钻杆冲蚀规律研究[J]. 石油学报, 2010, 31(6):1013-1017. doi:10.7623/syxb- 201006025 ZHU Xiaohua, LIU Shaohu, DONG Hua. A study on the drill pipe erosion law in gas drilling[J]. Acta Petrolei Sinica, 2010, 31(6):1013-1017. doi:10.7623/syxb2010-06025 [22] WANG G R, CHU F, TAO S Y, et al. Optimization design for throttle valve of managed pressure drilling based on CFD erosion simulation and response surface methodology[J]. Wear, 2015, 338-339:114-121. doi:10.1016/j.wear.2015.06.001 [23] LIU Haixiao, ZHOU Zhongwei, LIU Mingyang. A probability model of predicting the sand erosion profile in elbows for gas flow[J]. Wear, 2015, 342-343:377-390. doi:10.1016/j.wear.2015.09.012 [24] 邱亚玲,邹凤彬,祝效华,等. 页岩气压裂双弯头弯管冲蚀规律研究[J]. 润滑与密封, 2016, 41(9):97-101. doi:10.3969/j.issn.0254-0150.2016.09.018 QIU Yaling, ZOU Fengbin, ZHU Xiaohua, et al. Study on erosion wear of shale gas fracture on double elbows bend[J]. Lubrication Engineering, 2016, 41(9):97-101. doi:10.3969/j.issn.0254-0150.2016.09.018 [25] ZHAO Xuebin, TANG G H, LIU Zhigang, et al. Finite element analysis of anti-erosion characteristics of material with patterned surface impacted by particles[J]. Powder Technology, 2019, 342:193-203. doi:10.1016/j.powtec.2018.09.083 [26] ZHANG Ri, ZHAO Xiaofeng, ZHAO Guanhua, et al. Analysis of solid particle erosion in direct impact tests using the discrete element method[J]. Powder Technology, 2021, 383:256-269. doi:10.1016/j.powtec.2021.01.034 [27] PENG Wenshan, CAO Xuewen, HOU Jian, et al. Numerical prediction of solid particle erosion under upward multiphase annular flow in vertical pipe bends[J]. Inter |