[1] 李进步,付斌,赵忠军,等. 苏里格气田致密砂岩气藏储层表征技术及其发展展望[J]. 天然气工业, 2015, 35(12):35-41. doi:10.3787/j.issn.1000-0976.2015.12.-005 LI Jinbu, FU Bin, ZHAO Zhongjun, et al. Characterization technology for tight sandstone gas reservoirs in the Sulige Gas Field, Ordos Basin, and its development prospect[J]. Natural Gas Industry, 2015, 35(12):35-41. doi:10.3787/-j.issn.1000-0976.2015.12.005 [2] 李宏涛,史云清,肖开华,等. 元坝气田须三段气藏层序沉积与储层特征[J]. 天然气工业, 2016, 36(9):20-34. doi:10.3787/j.issn.1000-0976.2016.09.003 LI Hongtao, SHI Yunqing, XIAO Kaihua, et al. Sequence, sedimentary and reservoir characteristics of Xu 3 gas reservoir in the Yuanba Gas Field, NE Sichuan Basin[J]. Natural Gas Industry, 2016, 36(9):20-34. doi:10.3787/-j.issn.1000-0976.2016.09.003 [3] 刘昊伟,郑兴远,陈全红,等. 华庆地区长6深水沉积低渗透砂岩储层特征[J]. 西南石油大学学报(自然科学版),2010,32(1):21-26. doi:10.3863/j.issn.1674-5086.2010.01.004 LIU Haowei, ZHENG Xingyuan, CHEN Quanhong, et al. Analysis on characteristics of deep-water sedimentary tight sandstone reservoir of Chang 6 in Huaqing area[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2010, 32(1):21-26. doi:10.3863/j.-issn.1674-5086.2010.01.004 [4] 李志愿. 测井孔隙结构与储层产能关系研究[D]. 青岛:中国石油大学(华东), 2012, 6875. LI Zhiyuan. Research on relationship between pore structure and reservoir productivity with logging methods[D].Qingdao:China University of Petroleum, 2012, 68-75. [5] 柴细元,丁娱娇. 孔隙结构与地层压力相结合的储层产能预测技术[J]. 测井技术, 2012, 36(6):636-640. doi:10.16489/j.issn.1004-1338.2012.06.017 CHAI Xiyuan, DING Yujiao. Combination technology of the pore structure and formation pressure for productivity prediction[J]. Well Logging Technology, 2012, 36(6):636-640. doi:10.16489/j.issn.1004-1338.2012.06.017 [6] YAKOV V, LOOYESTIJN W J, SLIJKERMAN W F J, et al. A practical approach to obtain primary drainage capillary pressure curves from NMR core and log data[J]. Petrophysics, 2001, 42(4):334-343. [7] 运华云,赵文杰,刘兵开,等. 利用T2分布进行岩石孔隙结构研究[J]. 测井技术, 2002, 26(1):18-21. doi:10.16489/j.issn.1004-1338.2002.01.007 YUN Huayun, ZHAO Wenjie, LIU Bingkai, et al. Researching rock pore structure with T2 distribution[J]. Well Logging Technology, 2002, 26(1):18-21. doi:10.16489/-j.issn.1004-1338.2002.01.007 [8] 赵杰,姜亦忠,王伟男,等. 用核磁共振技术确定岩石孔隙结构的实验研究[J]. 测井技术, 2003, 27(3):185-188. doi:10.16489/j.issn.1004-1338.2003.03.004 ZHAO Jie, JIANG Yizhong, WANG Weinan, et al. Investigation of rock pore structure using NMR technology[J]. Well Logging Technology, 2003, 27(3):185-188. doi:10.-16489/j.issn.1004-1338.2003.03.004 [9] 何雨丹,毛志强,肖立志,等. 利用核磁共振T2分布构造毛管压力曲线的新方法[J]. 吉林大学学报(地球科学版), 2005, 35(2):177-181. doi:10.13278/j.cnki.-jjuese.2005.02.008 HE Yudan, MAO Zhiqiang, XIAO Lizhi, et al. A new method to obtain capillary pressure curve using NMR T2 distribution[J]. Journal of Jilin University (Earth Science Edition), 2005, 35(2):177-181. doi:10.13278/j.cnki.jjuese.-2005.02.008 [10] 邵维志,丁娱娇,刘亚,等. 核磁共振测井在储层孔隙结构评价中的应用[J]. 测井技术, 2009, 33(1):52-56. doi:10.16489/j.issn.1004-1338.2009.01.020 SHAO Weizhi, DING Yujiao, LIU Ya, et al. The application of NMR log data in evaluation of reservoir pore structure[J]. Well Logging Technology, 2009, 33(1):52-56. doi:10.16489/j.issn.1004-1338.2009.01.020 [11] 赵毅,施振飞,朱立华,等. 构造毛管压力曲线法在A油田储层评价中的应用[J]. 复杂油气藏, 2014(1):52-57. doi:10.16181/j.cnki.fzyqc.2014.01.011 ZHAO Yi, SHI Zhenfei, ZHU Lihua, et al. Application of capillary pressure curve construction method in the reservoir evaluation of A Oilfield[J]. Complex Hydrocarbon Reservoirs, 2014(1):52-57. doi:10.16181/j.cnki.fzyqc.-2014.01.011 [12] 李鹏举,谷雨峰. 核磁共振T2谱转换伪毛管压力曲线的矩阵方法[J]. 天然气地球科学, 2015, 26(4):700-705. doi:10.11764/j.issn.1672-1926.2015.04.0700 LI Pengju, GU Yufeng. Matrix method of transforming NMR T2 spectrum to pseudo capillary pressure curve[J]. Natural Gas Geoscience, 2015, 26(4):700-705. doi:10.-11764/j.issn.1672-1926.2015.04.0700 [13] 闫建平,温丹妮,李尊芝,等. 基于核磁共振测井的低渗透砂岩孔隙结构定量评价方法——以东营凹陷南斜坡沙四段为例[J]. 地球物理学报, 2016, 59(4):1543-1552. doi:10.6038/cjg20160434 YAN Jianping, WEN Danni, LI Zunzhi, et al. The quantitative evaluation method of low permeable sandstone pore structure based on nuclear magnetic resonance (NMR) logging[J]. Chinese Journal of Geophysics, 2016, 59(4):1543-1552. doi:10.6038/cjg20160434 [14] ZHOU C, LIU Z, SHI Y, et al. Applications of NMR logs to complex lithology interpretation of Ordos Basin[C]. Texas:SPWLA 48th Annual Logging Symposium, 2007. [15] 徐风,白松涛,赵建斌,等. 一种基于孔隙分量组合下的渗透率计算方法[J]. 石油天然气学报(江汉石油学院学报), 2013, 35(11):76-80, 93. XU Feng, BAI Songtao, ZHAO Jianbin, et al. A method of calculating permeability based on combination of components[J]. Journal of Oil and Gas Technology,2013, 35(11):76-80, 93. [16] 司兆伟,赵建斌,白松涛,等. 基于岩石物理与核磁测井的储层分类方法研究——以冀东油田某区块为例[J]. 石油天然气学报, 2013, 35(12):73-78. SI Zhaowei, ZHAO Jianbin, BAI Songtao, et al. Research of reservoir classification by nmr logging based on rock physics[J]. Journal of Oil and Gas Technology (J. JPI), 2013, 35(12):73-78. [17] 白松涛,程道解,万金彬,等. 砂岩岩石核磁共振T2谱定量表征[J]. 石油学报, 2016, 37(3):374-378. doi:10.7623/syxb201603010 BAI Songtao, CHENG Daojie, WAN Jinbin, et al. Quantitative characterization of sandstone NMR T2 spectrum[J]. Acta Petrolei Sinica, 2016, 37(3):374-378. doi:10.7623/-syxb201603010 [18] 刘堂宴,王绍明,傅容珊,等. 核磁共振谱的岩石孔喉结构分析[J]. 石油地球物理勘探, 2003, 38(3):328-333. doi:10.13810/j.cnki.issn.1000-7210.2003.03.022 LIU Tangyan, WANG Shaoming, FU Rongshan, et al. Analysis of rock pore throat structure with NMR spectra[J]. Oil Geophysical Prospecting, 2003, 38(3):328-333. doi:10.13810/j.cnki.issn.1000-7210.2003.03.022 [19] 于秀英,古正富,贾俊杰,等. 储层孔隙结构测井表征的新方法[J]. 非常规油气, 2016, 3(1):14-20. YU Xiuying, GU Zhengfu, JIA Junjie, et al. New method of reservoir pore structure logging characterization[J]. Unconventional Oil & Gas, 2016, 3(1):14-20. [20] 张冲,毛志强,金燕. 基于实验室条件下的核磁共振测井束缚水饱和度计算方法研究[J]. 核电子学与探测技术, 2010, 30(4):514-516. ZHANG Chong, MAO Zhiqiang, JIN Yan. experimental studies of nmr logging irreducible water saturation[J]. Nuclear Electronics & Detection Technology, 2010, 30(4):514-516. [21] 张冲,张超谟,张占松,等. 致密气储层岩心束缚水饱和度实验对比[J]. 天然气地球科学, 2016, 27(2):352-358. doi:10.11764/j.issn.1672-1926.2016.02.0352 ZHANG Chong, ZHANG Chaomo, ZHANG Zhansong, et al. Comparative experimental study of the core irreducible water saturation of tight gas reservoir[J]. Natural Gas Geoscience, 2016, 27(2):352-358. doi:10.11764/j.issn.1672-1926.2016.02.0352 [22] COATES G R, MARDON D, MARSCHALL D, et al. A new characterization of bulk volume irreducible using magnetic resonance[J]. Log Analysts, 1998, 39(1):51-63. [23] 郑庆华,柳益群. 特低渗透储层微观孔隙结构和可动流体饱和度特征[J]. 地质科技情报, 2015, 34(4):124-131. ZHENG Qinghua, LIU Yiqun. Microscopic pore structure and movable fluid saturation of ultra low permeability reservoir[J]. Geological Science and Technology Information, 2015, 34(4):124-131. [24] 韦青,李治平,白瑞婷,等. 微观孔隙结构对致密砂岩渗吸影响的试验研究[J]. 石油钻探技术, 2016, 44(5):109-115. doi:10.11911/syztjs.201605019 WEI Qing, LI Zhiping, BAI Ruiting, et al. An experimental study on the effect of microscopic pore structure on spontaneous imbibition in tight sandstones[J]. Petroleum Drilling Techniques, 2016, 44(5):109-115. doi:10.-11911/syztjs.201605019 [25] 万金彬,白松涛,郭笑锴,等. 南堡凹陷深层低孔隙度低渗透率储层产能预测方法[J]. 测井技术, 2015, 32(3):382-392. doi:10.16489/j.issn.1004-1338.2015.03.022 WAN Jinbin, BAI Songtao, GUO Xiaokai, et al. Productivity prediction methods of low porosity and permeability in deep reservoir in Nanpu Sag[J]. Well Logging Technology, 2015, 32(3):382-392. doi:10.16489/j.issn.1004-1338.2015.03.022 [26] 苏俊磊,孙建孟,苑吉波,等. 基于核磁共振孔隙结构的产能评价[J]. 西安石油大学学报(自然科学版), 2011, 26(3):44-47. SU Junlei, SUN Jianmeng, YUAN Jibo, et al. Reservoir productivity evaluation based on NMR pore structure[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2011, 26(3):44-47. |