[1] MAURER W C. Novel drilling techniques[M]. New York:Pergamon Press, 1968. [2] SMITH A G, PELLS P J N. Impact of fire on tunnels in Hawkesbury sandstone[J]. Tunnelling & Underground Space Technology Incorporating Trenchless Technology Research, 2008, 23(1):65-74. doi:10.1016/j.tust.2006.-11.003 [3] SOLES J A, GELLER L B. Experimental studies relating mineralogical and petrographic features to the thermal piercing of rocks[R]. Technical bulletin (Canada. Mines Branch), Department of Mines and Technical Surveys, Mines Branch, 1964. [4] POTTER R M, TESTER J W. Continuous drilling of vertical boreholes by thermal processes:including rock spallation and fusion:U. S. Patent 5, 771, 984[P]. 1998. [5] RAUENZAHN R M, TESTER J W. Rock failure mechanisms of flame-jet thermal spallation drilling-theory and experimental testing[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1989, 26(5):381-399. doi:10.1016/0148-9062(89)909-35-2 [6] RAUENZAHNF R M, TESTER J W. Numerical simulation and field testing of flame-jet thermal spallation drilling-2. Experimental verification[J]. International Journal of Heat and Mass Transfer, 1991, 34(3):809-818. doi:10.1016/0017-9310(91)90127-Z [7] WILKINSON M A, TESTER J W. Experimental measurement of surface temperatures during flame-jet induced thermal spallation[J]. Rock Mechanics and Rock Engineering, 1993, 26(1):29-62. doi:10.1007/BF01019868 [8] RAUENZAHN R M. Analysis of rock mechanics and gas dynamics of flame-jet thermal spallation drilling[D]. Massachusetts:Massachusetts Institute of Technology, 1986. [9] WALSH S D, LOMOV I, ROBERTS J J. Geomechanical modeling for thermal spallation drilling[R]. Lawrence Livermore National Lab. (LLNL), Livermore, CA(United States), 2011. [10] THIRUMALAI K, DEMOU S G. Effect of reduced pressure on thermal-expansion behavior of rocks and its significance to thermal fragmentation[J]. Journal of Applied Physics, 1970, 41(13):5147-5151. doi:10.1063/1.-1658636 [11] PRESTON F W, WHITE H E. Observations on spalling[J]. Journal of the American Ceramic Society, 2010, 17(1-12):137-44. doi:10.1111/j.1151-2916.1934.tb19296.x [12] THIRUMALAI K, CHEUNG J B. A study on a new concept of thermal hard rock crushing[C]//The 14th US Symposium on Rock Mechanics(USRMS). American Rock Mechanics Association, 1972. [13] AUGUSTINE C R. Hydrothermal spallation drilling and advanced energy conversion technologies for Engineered Geothermal Systems[D]. Massachusetts:Massachusetts Institute of Technology, 2009. [14] E Silva F J R, NETTO D B, DA Silva L F F, et al. Analysis of the performance of a thermal spallation device for rock drilling[C]//Proceedings of the 11th Brazilian Congress of Thermal Sciences and Engineering-ENCIT, (Curitiba, Brazil), Brazil Society of Mechanical Sciences and Engineering-ABCM. 2006. [15] SONG Xianzhi, LÜ Zehao, LI Gensheng, et al. Numerical analysis of characteristics of multi-orifice nozzle hydrothermal jet impact flow field and heat transfer[J]. Journal of Natural Gas Science & Engineering, 2016, 35:79-88. doi:10.1016/j.jngse.2016.08.013 [16] MEIER T, MAY D A, ROHR P R V. Numerical investigation of thermal spallation drilling using an uncoupled quasi-static thermoelastic finite element formulation[J]. Journal of Thermal Stresses, 2016, 39(9):1138-1151. doi:10.1080/01495739.2016.1193417 [17] AMES W F. Numerical methods for partial differential equations[M]. Pittsburgh:Academic Press, 2014. [18] LI M, NI H, WANG G, et al. Simulation of thermal stress effects in submerged continuous water jets on the optimal standoff distance during rock breaking[J]. Powder Technology, 2017, 320:445-456 doi:10.1016/j.powtec.2017.-07.071 [19] WILLIAMS R E, POTTER R M, MISKA S. Experiments in thermal spallation of various rocks[J]. Journal of Energy Resources Technology, 1996, 118(1):2-8. doi:10.1115/-1.2792690 [20] HASSANI F, NEKOOVAGHT P M, RADZISZEWSKI P, et al. Microwave assisted mechanical rock breaking[C]//12th ISRM Congress, International Society for Rock Mechanics and Rock Engineering, 2011. |