[1] 郭天翼,彭敏,伊穆兰,等. 自然语言处理领域中的自动问答研究进展[J]. 武汉大学学报(理学版),2019,65(5):417-426. doi:10.14188/j.1671-8836.2019.05.001 GUO Tianyi, PENG Min, YI Mulan, et al. Advances in question answering in natural language processing[J]. Journal of Wuhan University (Natural Science Edition), 2019, 65(5):417-426. doi:10.14188/j.1671-8836.2019.05.001 [2] WADHWA S, CHANDU K R, NYBERG E. Comparative analysis of neural QA models on SQuAD[C]. arXiv:W18-2610, 2018. doi:10.18653/v1/W18-2610 [3] SU D, XU Y, WINATA G I, et al. Generalizing question answering system with pretrained language model finetuning[C]. Proceedings of the 2nd Workshop on Machine Reading for Question Answering, 2019. doi:10.18653/v1/D19-5827 [4] 曹建文,万福成. 面向自动问答系统的问句相似度计算研究[J]. 重庆大学学报, 2019, 42(9):115-123. doi:10.11835/j.issn.1000-582X.2019.09.013 CAO Jianwen, WAN Fucheng. Question similarity computing method for automatic question answering system[J]. Journal of Chongqing University, 2019, 42(9):115-123. doi:10.11835/j.issn.1000-582X.2019.09.013 [5] WAN S, DRAS M, DALE R, et al. Using dependencybased features to take the ‘para-farce’ out of paraphrase[C]. Proceedings of the Australasian Language Technology Workshop, 2006:131-138. [6] DAS D, SMITH N A. Paraphrase identification as probabilistic quasi-synchronous recognition[C]. Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP, 2009:468-476. doi:10.3115/1687878.1687944 [7] FERNANDO S, STEVENSON M. A semantic similarity approach to paraphrase detection[C]. Proceedings of the 11th Annual Research Colloquium of the UK Special Interest Group for Computational Linguistics, 2008:45-52. [8] GUO W, DIAB M. Modeling sentences in the latent space[C]. Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics:Long Papersvolume, 2012:864-872. [9] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521:436-444. doi:10.1038/nature14539 [10] 冯兴杰,张乐,曾云泽. 基于多注意力CNN的问题相似度计算模型[J]. 计算机工程, 2009, 45(9):284-290. doi:10.1967-8/j.issn.1000-3428.0052098 FENG Xingjie, ZHANG Le, ZENG Yunze. Question similarity calculation model based on multi-attention CNN[J]. Computer Engineering, 2009, 45(9):284-290. doi:10.19678/j.issn.1000-3428.0052098 [11] 黄江平,姬东鸿. 基于卷积网络的句子语义相似性模型[J]. 华南理工大学学报(自然科学版), 2017, 45(3):68-75. doi:10.3969/j.issn.1000-565X.20-17.03.010 HUANG Jiangping, JI Donghong. Convolutional net-work-based semantic similarity model of sentences[J]. Journal of South China University of Technology (Natural Science Edition), 2017, 45(3):68-75. doi:10.3969/j.issn.1000-565X.20-17.03.010 [12] KALCHBRENNER N, GREFENSTETTE E, BLUNSOM P. A convolutional neural network for modelling sentences[C]. arXiv:P14-1062, 2014. doi:10.3115/v1/P14-1062 [13] YIN W, SCHÜTZE H. Convolutional neural network for paraphrase identification[C]. Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies, 2015:901-911. [14] SOCHER R, HUANG E H, PENNIN J, et al. Dynamic pooling and unfolding recursive autoencoders for paraphrase detection[C]. Advances in Neural Information Processing Systems, 2011:801-809. [15] HU B, LU Z, LI H, et al. Convolutional neural network architectures for matching natural language sentences[C]. Advances in Neural Information Processing Systems, 2014:2042-2050. [16] MUELLER J, THYAGARAJAN A. Siamese recurrent architectures for learning sentence similarity[C]. Thirtieth AAAI Conference on Artificial Intelligence, 2016. [17] NECULOIU P, VERSTEEGH M, ROTARU M. Learning text similarity with siamese recurrent networks[C]. Proceedings of the 1st Workshop on Representation Learning for NLP, 2016:148-157. [18] 徐雄. 基于深度学习的问答系统研究[J]. 湖北师范大学学报(自然科学版),2019,39(1):10-18. doi:10.3969/j.issn.2096-3149.2019.01.003 XU Xiong. Research on question answering system based on deep learning[J]. Journal of Hubei Normal University (Natural Science), 2019, 39(1):10-18. doi:10.3969/j.issn.2096-3149.2019.01.003 [19] 夏元昉. 基于深度学习的问答系统技术研究[D]. 杭州:浙江大学, 2017. XIA Yuanfang. Research on question answering system based on deep learning[D]. Hangzhou:Zhejiang University, 2017. [20] 陈瑛,陈昂轩,董玉博,等. 基于LSTM的食品安全自动问答系统方法研究[J]. 农业机械学报, 2019, 50(S1):380-384. doi:10.6041/j.issn.1000-1298.2019.S0.058 CHEN Ying, CHEN Angxuan, DONG Yubo, et al. Methods of food safety question answering system based on LSTM[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(S1):380-384. doi:10.6041/j.issn.1000-1298.2019.S0.058 [21] 刘依红,杨波,孙宇宁,等. 基于BiLSTM的婚姻法自然语言问答[J]. 计算机工程与设计, 2019, 40(4):1190-1195. doi:10.16208/j.issn.1000-7024.2019.04.046 LIU Yihong, YANG Bo, SUN Yuling, et al. Q & A of natural language in marriage law based on BiLSTM[J]. Computer Engineering and Design, 2019, 40(4):1190-1195. doi:10.16208/j.issn1000-7024.2019.04.046 [22] HOFFER E, AILON N. Deep metric learning using triplet network[C]. International Workshop on Similarity-Based Pattern Recognition, Springer, Cham, 2015:84-92. [23] JÜRGEN S. Deep learning in neural networks:An overview[J]. Neural Networks, 2015, 61:85-117. doi:10.1016/j.neunet.2014.09.003 [24] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780. doi:10.1162/neco.1997.9.8.1735 [25] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[J]. Advances in Neural Information Processing Systems, 2013, 26:3111-3119. |