[1] 王忠畅,杨天宇,陈晶华,等. 巴西深水盐下油田开发工程模式探讨及对我国南海深水油气田开发的借鉴意义[J]. 中国海上油气, 2019, 31(2): 155-159. doi: 10.11935/j.issn.1673-1506.2019.02.019 WANG Zhongchang, YANG Tianyu, CHEN Jinghua, et al. Discussion on development mode of deep water presalt oilfields in Brazil and its reference significance to the development of deep water oil and gas fields in South China Sea[J]. China Offshore Oil and Gas, 2019, 31(2): 155-159. doi: 10.11935/j.issn.1673-1506.2019.02.019 [2] 李志刚,安维峥. 我国水下油气生产系统装备工程技术进展与展望[J]. 中国海上油气, 2020, 32(2): 134-141. doi: 10.11935/j.issn.1673-1506.2020.02.016 LI Zhigang, AN Weizheng. Progress and outlook of equipment engineering technologies for subseaoil and gas production system in China[J]. China Offshore Oil and Gas, 2020, 32(2): 134-141. doi: 10.11935/j.issn.1673-1506.2020.02.016 [3] 王卫龙,郭揆常,陆文伟. 东海边际气田开发水下生产系统关键技术研究[J]. 上海节能, 2018(2): 105-108. doi: 10.13770/j.cnki.issn2095-705x.2018.02.010 WANG Weilong, GUO Kuichang, LU Wenwei. Technology research on developing underwater production system at Marginal East Sea Gas Field[J]. Shanghai Energy, 2018(2): 105-108. doi: 10.13770/j.cnki.issn2095-705x.2018.02.010 [4] 郭宏,谢鹏,宋春娜. 脐带缆测试技术及其在文昌气田的应用[J]. 中国海上油气, 2018, 30(1): 171-176. doi: 10.11935/j.issn.1673-1506.2018.01.022 GUO Hong, XIE Peng, SONG Chunna. Umbilical test technology and its application in WC Gas Field[J]. China Offshore Oil and Gas, 2018, 30(1): 171-176. doi: 10.11935/j.issn.1673-1506.2018.01.022 [5] 孙玉松,刘晓艳. 世界首套超声技术水下两相湿气流量计研制成功[J]. 仪器仪表用户, 2018, 25(9): 54. SUN Yusong, LIU Xiaoyan. Successful realization of the first ultrasonic underwater two-phase wet gas flowmeter in the world[J]. Instrumentation Users, 2018, 25(9): 54. [6] SOTOODEH K. A review on subsea process and valve technology[J]. Springer International Publishing, 2019, 14(4): 210-219. doi: 10.1007/s40868-019-00061-4 [7] 唐洋,张中根,易典学,等. 水下生产系统连接器及其关键技术[J]. 西南石油大学学报(自然科学版), 2019, 41(3): 160-168. doi: 10.11885/j.issn.16745086.2018.02.08.01 TANG Yang, ZHANG Zhonggen, YI Dianxue, et al. Connectors for an underwater production system and key techniques[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2019, 41(3): 160-168. doi: 10.11885/j.issn.16745086.2018.02.08.01 [8] 张康,洪毅,段梦兰,等. 深水水下连接器国产化设计关键技术[J]. 石油科学通报, 2017, 2(1): 123132. doi: 10.3969/j.issn.2096-1693.2017.01.012 ZHANG Kang, HONG Yi, DUAN Menglan, et al. Key design technologies of developing China's own subsea connectors[J]. Petroleum Science Bulletin, 2017, 2(1): 123-132. doi: 10.3969/j.issn.2096-1693.2017.01.012 [9] CARPENTER C. Subsea-systems innovations improve heavy-oil production in ultradeep water[J]. Journal of Petroleum Technology, Society of Petroleum Engineers, 2021, 73(8): 53-54. doi: 10.2118/0821-0053-JPT [10] HANSSEN B V. Technology focus: Subsea systems[J]. Journal of Petroleum Technology, 2019, 71(8): 58. [11] LI Yufang, ZHAO Honglin, WANG Deguo. Study on the subsea umbilical cable equivalent device's hydraulic transmission characteristics[J]. Ships and Offshore Structures, 2021, 16(5): 479-491. doi: 10.1080/17445302.2020.1768-55 [12] 王站稳,张红,赵钰,等. 基于响应面法的K形金属密封结构优化设计[J]. 石油机械, 2022, 50(4): 80-85. doi: 10.16082/j.cnki.issn.1001-4578.2022.04.011 WANG Zhanwen, ZHANG Hong, ZHAO Yu, et al. Optimization design for K-shaped metal seal structure based on response surface method[J]. China Petroleum Machinery, 2022, 50(4): 80-85. doi: 10.16082/j.cnki.issn.1001-4578.2022.04.011 [13] 郭永宾,王尔钧,张崇,等. 水下采油树油管悬挂器传热计算分析[J]. 机床与液压, 2021, 49(11): 144-149. doi: 10.3969/j.issn.1001-3881.2021.11.030 GUO Yongbin, WANG Erjun, ZHANG Chong, et al. Calculation and analysis of heat transfer of subsea tree tubing hanger[J]. Machine Tool & Hydraulics, 2021, 49(11): 144-149. doi: 10.3969/j.issn.1001-3881.2021.11.030 [14] 刘超,刘健,朱元坤,等. 基于模糊贝叶斯网络油管挂下放安装风险分析[J]. 石油机械, 2020, 48(10): 71-77. doi: 10.16082/j.cnki.issn.1001-4578.2020.10.011 LIU Chao, LIU Jian, ZHU Yuankun, et al. Risk analysis of tubing hanger installation based on fuzzy Bayesian network[J]. China Petroleum Machinery, 2020, 48(10): 71-77. doi: 10.16082/j.cnki.issn.1001-4578.2020.10.011 [15] 万春燕,刘文霄,黄元元,等. 深水液控式油管悬挂器安装回收工具研制[J]. 石油机械, 2019, 47(12): 64-68. doi: 10.16082/j.cnki.issn.1001-4578.2019.12.010 WAN Chunyan, LIU Wenxiao, HUANG Yuanyuan, et al. Hydraulic-control deep water tubing hanger running and retrieving tool[J]. China Petroleum Machinery, 2019, 47(12): 64-68. doi: 10.16082/j.cnki.issn.1001-4578.2019.12.010 [16] LUO Xiaolan, GU Yuhong, LIU Changling, et al. Strength design method for tubing hanger of subsea christmas tree against big temperature difference[J]. China Ocean Engineering, 2014, 28(5): 659-670. doi: 10.1007/s13344-014-0052-1 [17] WANG Xiangliang, ZHOU Pingzhang, MA Yun, et al. Optimization design on resonance avoidance for 3D piping systems based on wave approach[J]. International Journal of Pressure Vessels and Piping, 2023, 201: 104872. doi: 10.1016/j.ijpvp.2022.104872 [18] PATEL H, SALEHI S, TEODORIU C, et al. Performance evaluation and parametric study of elastomer seal in conventional hanger assembly[J]. Journal of Petroleum Science and Engineering, 2019, 175: 246-254. doi: 10.1016/j.petrol.2018.12.051 [19] CHEN Yong, XIAO Guoping, ZHONG Wenjian, et al. Investigation of mechanical numerical simulation and expansion experiment of expandable liner hanger in oil and gas completion[J]. Shock and Vibration, 2020: 9375835. doi: 10.1155/2020/9375835 [20] PANG Nan, JIA Peng, WANG Liquan, et al. Dynamic Bayesian network-based reliability and safety assessment of the subsea christmas tree[J]. Process Safety and Environmental Protection, 2021, 145: 435-446. doi: 10.1016/j.psep.2020.11.026 [21] WANG Yingying, LUO Wentao, LIU Shujie, et al. A model for reliability assessment of sealing performance of the C-shaped metal sealing ring at the outlet of the subsea tubing hanger[J]. Ocean Engineering, 2022, 243: 110311. doi: 10.1016/j.oceaneng.2021.110311 [22] ASME锅炉及压力容器委员会动力锅炉分委员会. ASME锅炉及压力容器: BPVC-VIII-22015[S]. 北京:中国石化出版社, 2015. ASME Boiler and Pressure Vessel Committee Power Boiler Subcommittee. ASME Boiler and pressure vessel: : BPVC-VIII-22015[S]. Beijing: China Petrochemical Press, 2015. [23] BAI Yong, BAI Qiang. Subsea engineering handbook[M]. Burlington: Gulf Professional Publishing, 2012. [24] BYBEE K. Dalia subsea production system[J]. Society of Petroleum Engineers, 2007, 59(8): 62-64. doi: 10.2118/0807-0062-JPT [25] CHRISTOPHERSON A, HAN Y H. Validation for external tieback connector bending capacity by strain measurement[C]. San Antonio: ASME 2019 Pressure Vessels & Piping Conference, 2019. doi: 10.1115/PVP2019-93925 [26] 刘磊,杨萍,杨亚涛,等. 速度管井下悬挂技术在长北区块的应用[J]. 钻采工艺, 2020, 43(1): 117-120. doi: 10.3969/J.ISSN.1006-768X.2020.01.33 LIU Lei, YANG Ping, YANG Yatao, et al. Application of downhole suspension technology of velocity tube in Changbei Block[J]. Drilling & Production Technology, 2020, 43(1): 117-120. doi: 10.3969/J.ISSN.1006-768X.2020.01.33 [27] 罗玉贵. 水下采油树海试技术方案[J]. 船海工程, 2019, 48(5): 107-111, 115. doi: 10.3963/j.issn.1671-79-53.2019.05.027 LUO Yugui. Underwater oil recovery tree sea trial technology program[J]. Ship & Ocean Engineering, 2019, 48(5): 107-111, 115. doi: 10.3963/j.issn.1671-7953.2019.05.027 [28] 张凯,刘健,邓平,等. 水下采油树油管悬挂器密封性能分析[J]. 润滑与密封, 2015, 40(3): 30-34. doi: 10.3969/j.issn.0254-0150.2015.03.007 ZHANG Kai, LIU Jian, DENG Ping, et al. Sealing performance analysis of subsea christmas tree tubing hanger[J]. Lubrication Engineering, 2015, 40(3): 30-34. doi: 10.3969/j.issn.0254-0150.2015.03.007 [29] SAITHALA J R, KHARUSI A, SURYANARAYANA M, et al. Implications of failure of alloy 718(UNS N07718) tubing hanger in sour well[J]. Engineering Failure Analysis, 2021, 120: 105060. doi: 10.1016/j.engfailanal.2020.105060 [30] XIAO Jinjiang. Tubing hanger system: EP20200715607[P]. 2023-05-03. [31] ROSS C S. Tubing hanger assembly with wellbore access, and method of accessing a wellbore: US201916707963[P]. 2020-04-16. [32] BACA J B, CHIRKO R, WEIMER E C. Tension latch tubing hanger apparatus: US201816632600[P]. 2020-07-30. [33] DANNISH M C. Protection sleeve for tubing hanger threads: US202016741636[P]. 2020-07-16. [34] 中国标准委员会. 压力容器第3 部分:设计: GB/T 150.3—2024[S]. 北京:中国标准出版社, 2024. China National Standardization Committee. Pressure vessels - Part 3: Design: GB/T 150.3—2024[S]. Beijing: Standards Press of China, 2024. |